Abstract

To achieve quantum-noise-limited performance, background-limited laser receivers require narrow-band optical filters. We measured and modeled the ultranarrow-band transmission spectrum of a Cs Faraday filter at 852 nm. The transmission spectrum consisted of passbands on either side of the 6 2S1/2–6 2P3/2 hyperfine doublet lines, making a total of four. The passbands may be simple peaks or highly modulated, depending on the operating parameters. We observed peaked passbands of near-unity transmission with a 0.6-GHz bandwidth and modulated bands with features as sharp as 100MHz. Excellent agreement with our calculations at 852 nm allows us to predict confidently a 0.7-GHz transmission band for Cs at 455 nm.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Gelbwachs, IEEE J. Quantum Electron. 24, 1266 (1988).
    [Crossref]
  2. P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, A. Lurio, Appl. Phys. Lett. 15, 179 (1969).
    [Crossref]
  3. T. Endo, T. Yabuzoki, M. Kitano, T. Sato, T. Ogawa, IEEE J. Quantum Electron. QE-13, 866 (1977).
    [Crossref]
  4. P. Yeh, Appl. Opt. 21, 2069 (1982).
    [Crossref] [PubMed]
  5. T. Shay, in Proceedings of the International Conference on Lasers ’90, D. G. Harris, J. Herbelin, eds. (STS, McLean, Va., to be published).
  6. An image-preserving ALF was developed by E. Korevaar, M. Rivers, K. Choi, S. Bloom, K. Slatnick, C. S. Liu, in Proceedings of the International Conference on Lasers ’89, D. G. Harris, T. M. Shay, eds. (STS, McLean, Va., 1990), pp. 933–939.
  7. B. M. Schmidt, J. M. Williams, D. Williams, J. Opt. Soc. Am. 54, 454 (1964).
    [Crossref]
  8. G. Agnelli, A. Cacciani, M. Fofi, Solar Phys. 44, 509 (1975).
    [Crossref]
  9. The Faraday filter was purchased from Shay-Blythe International, Las Cruces, N.M.

1988 (1)

J. A. Gelbwachs, IEEE J. Quantum Electron. 24, 1266 (1988).
[Crossref]

1982 (1)

1977 (1)

T. Endo, T. Yabuzoki, M. Kitano, T. Sato, T. Ogawa, IEEE J. Quantum Electron. QE-13, 866 (1977).
[Crossref]

1975 (1)

G. Agnelli, A. Cacciani, M. Fofi, Solar Phys. 44, 509 (1975).
[Crossref]

1969 (1)

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, A. Lurio, Appl. Phys. Lett. 15, 179 (1969).
[Crossref]

1964 (1)

Agnelli, G.

G. Agnelli, A. Cacciani, M. Fofi, Solar Phys. 44, 509 (1975).
[Crossref]

Bloom, S.

An image-preserving ALF was developed by E. Korevaar, M. Rivers, K. Choi, S. Bloom, K. Slatnick, C. S. Liu, in Proceedings of the International Conference on Lasers ’89, D. G. Harris, T. M. Shay, eds. (STS, McLean, Va., 1990), pp. 933–939.

Cacciani, A.

G. Agnelli, A. Cacciani, M. Fofi, Solar Phys. 44, 509 (1975).
[Crossref]

Choi, K.

An image-preserving ALF was developed by E. Korevaar, M. Rivers, K. Choi, S. Bloom, K. Slatnick, C. S. Liu, in Proceedings of the International Conference on Lasers ’89, D. G. Harris, T. M. Shay, eds. (STS, McLean, Va., 1990), pp. 933–939.

Endo, T.

T. Endo, T. Yabuzoki, M. Kitano, T. Sato, T. Ogawa, IEEE J. Quantum Electron. QE-13, 866 (1977).
[Crossref]

Fofi, M.

G. Agnelli, A. Cacciani, M. Fofi, Solar Phys. 44, 509 (1975).
[Crossref]

Gelbwachs, J. A.

J. A. Gelbwachs, IEEE J. Quantum Electron. 24, 1266 (1988).
[Crossref]

Kitano, M.

T. Endo, T. Yabuzoki, M. Kitano, T. Sato, T. Ogawa, IEEE J. Quantum Electron. QE-13, 866 (1977).
[Crossref]

Korevaar, E.

An image-preserving ALF was developed by E. Korevaar, M. Rivers, K. Choi, S. Bloom, K. Slatnick, C. S. Liu, in Proceedings of the International Conference on Lasers ’89, D. G. Harris, T. M. Shay, eds. (STS, McLean, Va., 1990), pp. 933–939.

Lankard, J. R.

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, A. Lurio, Appl. Phys. Lett. 15, 179 (1969).
[Crossref]

Liu, C. S.

An image-preserving ALF was developed by E. Korevaar, M. Rivers, K. Choi, S. Bloom, K. Slatnick, C. S. Liu, in Proceedings of the International Conference on Lasers ’89, D. G. Harris, T. M. Shay, eds. (STS, McLean, Va., 1990), pp. 933–939.

Lurio, A.

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, A. Lurio, Appl. Phys. Lett. 15, 179 (1969).
[Crossref]

Moruzzi, V. L.

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, A. Lurio, Appl. Phys. Lett. 15, 179 (1969).
[Crossref]

Ogawa, T.

T. Endo, T. Yabuzoki, M. Kitano, T. Sato, T. Ogawa, IEEE J. Quantum Electron. QE-13, 866 (1977).
[Crossref]

Rivers, M.

An image-preserving ALF was developed by E. Korevaar, M. Rivers, K. Choi, S. Bloom, K. Slatnick, C. S. Liu, in Proceedings of the International Conference on Lasers ’89, D. G. Harris, T. M. Shay, eds. (STS, McLean, Va., 1990), pp. 933–939.

Sato, T.

T. Endo, T. Yabuzoki, M. Kitano, T. Sato, T. Ogawa, IEEE J. Quantum Electron. QE-13, 866 (1977).
[Crossref]

Schmidt, B. M.

Shay, T.

T. Shay, in Proceedings of the International Conference on Lasers ’90, D. G. Harris, J. Herbelin, eds. (STS, McLean, Va., to be published).

Slatnick, K.

An image-preserving ALF was developed by E. Korevaar, M. Rivers, K. Choi, S. Bloom, K. Slatnick, C. S. Liu, in Proceedings of the International Conference on Lasers ’89, D. G. Harris, T. M. Shay, eds. (STS, McLean, Va., 1990), pp. 933–939.

Sorokin, P. P.

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, A. Lurio, Appl. Phys. Lett. 15, 179 (1969).
[Crossref]

Williams, D.

Williams, J. M.

Yabuzoki, T.

T. Endo, T. Yabuzoki, M. Kitano, T. Sato, T. Ogawa, IEEE J. Quantum Electron. QE-13, 866 (1977).
[Crossref]

Yeh, P.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, A. Lurio, Appl. Phys. Lett. 15, 179 (1969).
[Crossref]

IEEE J. Quantum Electron. (2)

T. Endo, T. Yabuzoki, M. Kitano, T. Sato, T. Ogawa, IEEE J. Quantum Electron. QE-13, 866 (1977).
[Crossref]

J. A. Gelbwachs, IEEE J. Quantum Electron. 24, 1266 (1988).
[Crossref]

J. Opt. Soc. Am. (1)

Solar Phys. (1)

G. Agnelli, A. Cacciani, M. Fofi, Solar Phys. 44, 509 (1975).
[Crossref]

Other (3)

The Faraday filter was purchased from Shay-Blythe International, Las Cruces, N.M.

T. Shay, in Proceedings of the International Conference on Lasers ’90, D. G. Harris, J. Herbelin, eds. (STS, McLean, Va., to be published).

An image-preserving ALF was developed by E. Korevaar, M. Rivers, K. Choi, S. Bloom, K. Slatnick, C. S. Liu, in Proceedings of the International Conference on Lasers ’89, D. G. Harris, T. M. Shay, eds. (STS, McLean, Va., 1990), pp. 933–939.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup for high-resolution Faraday filter transmission spectrum measurement. The Faraday filter consists of the components enclosed by the dashed box. DL, diode laser; PDR and PDO, reference and output photodiodes, respectively; Px and Py, polarizers.

Fig. 2
Fig. 2

Cs 852-nm Faraday filter transmission spectrum optimized for a laser receiver application. The magnetic field and the vapor temperature were chosen to produce a narrow bandpass with high transmission. Fresnel losses, which can be greatly reduced, accounted for 90% of the transmission losses.

Fig. 3
Fig. 3

Transmission spectrum variation for varying temperature and field strength. The passband position can be shifted by adjusting the temperature of the field. A square passband can be produced between the hyperfine splitting.

Fig. 4
Fig. 4

Transmission spectrum in excellent agreement with the calculation. The coincidence of the transmission peaks shows the correspondence between the measured and calculated polarization rotation.

Fig. 5
Fig. 5

Expected transmission spectrum at 455 nm. The operating parameters were chosen to give high transmission and narrow bandwidth at 455 nm while blocking transmission at the nearby 459-nm transition.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T ( ν ) = [ ½ exp ( - α + z ) + ½ exp ( - α - z ) ] sin 2 δ ,
δ ( ν ) = π ν z c [ n - ( ν ) - n + ( ν ) ] ,
α ( ν ) = N λ 0 2 8 π g i g k A i k Γ 2 π ( Δ ν ) 2 + ( Γ 2 ) 2 ,
n ( ν ) - 1 = - N λ 0 3 32 π 3 g i g k A i k Δ ν ( Δ ν ) 2 + ( Γ 2 ) 2 ,

Metrics