Abstract

We analyze the surface-wave propagation in homogeneous layers of chiral or optically active materials. Two cases of chiral slab are considered: a symmetric chiral slab waveguide and a grounded chiral slab waveguide. The dispersion relation and the electric-field components for surface waves guided in a symmetric chiral slab are analyzed and discussed in detail. The plots of dispersion diagrams and normalized intensities of electric-field components of surface waves are given for both symmetric and grounded chiral slabs, and their novel features are pointed out. The effects of chirality on these diagrams and field components are discussed. Physical insights and potential applications of the results are addressed.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Engheta, P. Pelet, Opt. Lett. 14, 593 (1989).
    [Crossref] [PubMed]
  2. D. L. Jaggard, J. C. Liu, X. Sun, Electron. Lett. 27, 77 (1991).
    [Crossref]
  3. D. L. Jaggard, A. R. Mickelson, C. H. Papas, Appl. Phys. 18, 211 (1979).
    [Crossref]
  4. N. Engheta, P. Pelet, Electron. Lett. 27, 5 (1991).
    [Crossref]
  5. P. Pelet, N. Engheta, J. Appl. Phys. 67, 2742 (1990).
    [Crossref]
  6. D. L. Jaggard, N. Engheta, J. Liu, Electron. Lett. 26, 1332 (1990).
    [Crossref]
  7. M. Chien, Y. Kim, H. Grebel, Opt. Lett. 14, 826 (1989).
    [Crossref] [PubMed]
  8. A. H. Sihvola, I. V. Lindell, Electron. Lett. 26, 1007 (1990).
    [Crossref]
  9. M. P. Silverman, J. Badoz, J. Opt. Soc. Am. A 7,1163 (1990).
    [Crossref]
  10. S. Bassiri, N. Engheta, C. H. Papas, Alta Freq. LV-2, 83 (1986).
  11. D. L. Jaggard, X. Sun, N. Engheta, IEEE Trans. Antennas Propag. 36, 1007 (1988).
    [Crossref]
  12. P. Pelet, N. Engheta, IEEE Trans. Antennas Propag. 38, 90 (1990).
    [Crossref]
  13. A. Lakhtakia, V. K. Varadan, V. V. Varadan, Appl. Opt. 24, 4146 (1985).
    [Crossref] [PubMed]
  14. M. P. Silverman, J. Opt. Soc. Am. A 5, 1852 (1988).
    [Crossref]
  15. P. Pelet, N. Engheta, “Chirostrip antenna: line source problem,” J. Electromagnetic Waves Applications (to be published).
  16. R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1961).

1991 (2)

N. Engheta, P. Pelet, Electron. Lett. 27, 5 (1991).
[Crossref]

D. L. Jaggard, J. C. Liu, X. Sun, Electron. Lett. 27, 77 (1991).
[Crossref]

1990 (5)

A. H. Sihvola, I. V. Lindell, Electron. Lett. 26, 1007 (1990).
[Crossref]

M. P. Silverman, J. Badoz, J. Opt. Soc. Am. A 7,1163 (1990).
[Crossref]

P. Pelet, N. Engheta, J. Appl. Phys. 67, 2742 (1990).
[Crossref]

D. L. Jaggard, N. Engheta, J. Liu, Electron. Lett. 26, 1332 (1990).
[Crossref]

P. Pelet, N. Engheta, IEEE Trans. Antennas Propag. 38, 90 (1990).
[Crossref]

1989 (2)

1988 (2)

D. L. Jaggard, X. Sun, N. Engheta, IEEE Trans. Antennas Propag. 36, 1007 (1988).
[Crossref]

M. P. Silverman, J. Opt. Soc. Am. A 5, 1852 (1988).
[Crossref]

1986 (1)

S. Bassiri, N. Engheta, C. H. Papas, Alta Freq. LV-2, 83 (1986).

1985 (1)

1979 (1)

D. L. Jaggard, A. R. Mickelson, C. H. Papas, Appl. Phys. 18, 211 (1979).
[Crossref]

Badoz, J.

Bassiri, S.

S. Bassiri, N. Engheta, C. H. Papas, Alta Freq. LV-2, 83 (1986).

Chien, M.

Engheta, N.

N. Engheta, P. Pelet, Electron. Lett. 27, 5 (1991).
[Crossref]

P. Pelet, N. Engheta, J. Appl. Phys. 67, 2742 (1990).
[Crossref]

D. L. Jaggard, N. Engheta, J. Liu, Electron. Lett. 26, 1332 (1990).
[Crossref]

P. Pelet, N. Engheta, IEEE Trans. Antennas Propag. 38, 90 (1990).
[Crossref]

N. Engheta, P. Pelet, Opt. Lett. 14, 593 (1989).
[Crossref] [PubMed]

D. L. Jaggard, X. Sun, N. Engheta, IEEE Trans. Antennas Propag. 36, 1007 (1988).
[Crossref]

S. Bassiri, N. Engheta, C. H. Papas, Alta Freq. LV-2, 83 (1986).

P. Pelet, N. Engheta, “Chirostrip antenna: line source problem,” J. Electromagnetic Waves Applications (to be published).

Grebel, H.

Harrington, R. F.

R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1961).

Jaggard, D. L.

D. L. Jaggard, J. C. Liu, X. Sun, Electron. Lett. 27, 77 (1991).
[Crossref]

D. L. Jaggard, N. Engheta, J. Liu, Electron. Lett. 26, 1332 (1990).
[Crossref]

D. L. Jaggard, X. Sun, N. Engheta, IEEE Trans. Antennas Propag. 36, 1007 (1988).
[Crossref]

D. L. Jaggard, A. R. Mickelson, C. H. Papas, Appl. Phys. 18, 211 (1979).
[Crossref]

Kim, Y.

Lakhtakia, A.

Lindell, I. V.

A. H. Sihvola, I. V. Lindell, Electron. Lett. 26, 1007 (1990).
[Crossref]

Liu, J.

D. L. Jaggard, N. Engheta, J. Liu, Electron. Lett. 26, 1332 (1990).
[Crossref]

Liu, J. C.

D. L. Jaggard, J. C. Liu, X. Sun, Electron. Lett. 27, 77 (1991).
[Crossref]

Mickelson, A. R.

D. L. Jaggard, A. R. Mickelson, C. H. Papas, Appl. Phys. 18, 211 (1979).
[Crossref]

Papas, C. H.

S. Bassiri, N. Engheta, C. H. Papas, Alta Freq. LV-2, 83 (1986).

D. L. Jaggard, A. R. Mickelson, C. H. Papas, Appl. Phys. 18, 211 (1979).
[Crossref]

Pelet, P.

N. Engheta, P. Pelet, Electron. Lett. 27, 5 (1991).
[Crossref]

P. Pelet, N. Engheta, J. Appl. Phys. 67, 2742 (1990).
[Crossref]

P. Pelet, N. Engheta, IEEE Trans. Antennas Propag. 38, 90 (1990).
[Crossref]

N. Engheta, P. Pelet, Opt. Lett. 14, 593 (1989).
[Crossref] [PubMed]

P. Pelet, N. Engheta, “Chirostrip antenna: line source problem,” J. Electromagnetic Waves Applications (to be published).

Sihvola, A. H.

A. H. Sihvola, I. V. Lindell, Electron. Lett. 26, 1007 (1990).
[Crossref]

Silverman, M. P.

Sun, X.

D. L. Jaggard, J. C. Liu, X. Sun, Electron. Lett. 27, 77 (1991).
[Crossref]

D. L. Jaggard, X. Sun, N. Engheta, IEEE Trans. Antennas Propag. 36, 1007 (1988).
[Crossref]

Varadan, V. K.

Varadan, V. V.

Alta Freq. (1)

S. Bassiri, N. Engheta, C. H. Papas, Alta Freq. LV-2, 83 (1986).

Appl. Opt. (1)

Appl. Phys. (1)

D. L. Jaggard, A. R. Mickelson, C. H. Papas, Appl. Phys. 18, 211 (1979).
[Crossref]

Electron. Lett. (4)

N. Engheta, P. Pelet, Electron. Lett. 27, 5 (1991).
[Crossref]

D. L. Jaggard, J. C. Liu, X. Sun, Electron. Lett. 27, 77 (1991).
[Crossref]

D. L. Jaggard, N. Engheta, J. Liu, Electron. Lett. 26, 1332 (1990).
[Crossref]

A. H. Sihvola, I. V. Lindell, Electron. Lett. 26, 1007 (1990).
[Crossref]

IEEE Trans. Antennas Propag. (2)

D. L. Jaggard, X. Sun, N. Engheta, IEEE Trans. Antennas Propag. 36, 1007 (1988).
[Crossref]

P. Pelet, N. Engheta, IEEE Trans. Antennas Propag. 38, 90 (1990).
[Crossref]

J. Appl. Phys. (1)

P. Pelet, N. Engheta, J. Appl. Phys. 67, 2742 (1990).
[Crossref]

J. Opt. Soc. Am. A (2)

Opt. Lett. (2)

Other (2)

P. Pelet, N. Engheta, “Chirostrip antenna: line source problem,” J. Electromagnetic Waves Applications (to be published).

R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, New York, 1961).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Symmetric chiral slab. The dispersion diagram for guided surface waves in this symmetric chiral slab of thickness d = 0.4λ and of parameters ɛc, = 2ɛo, μc = μo, and ξc = 0.0005 mho is given in (b). The first two modes (with zero cutoff frequency) have resulted from Δo = 0, and the next two have resulted from Δe = 0. In the limit as ξc → 0, these modes will approach odd TE (the lower one of the first two curves), odd TM (the upper one of the first two curves), even TE (first nonzero cutoff), and even TM modes, respectively. Definition of odd and even modes are given in the text. Normalized intensities of electric-field components for the lowest odd mode guided in this slab are shown in (c).

Fig. 2
Fig. 2

(a) Grounded chiral slab. The dispersion diagram for guided surface waves in this grounded chiral slab of thickness d = 0.2λ and of parameters ɛc = 2ɛo, μc = μo, and ξc = 0.001 mho is given in (b). Normalized intensities of electric-field components for the dominant mode guided in this slab are shown in (c).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ o e = [ ω o S + S o sin cos ( S + d / 2 ) k + S + η c cos sin ( S + d / 2 ) ] × [ k - S - cos sin ( S - d / 2 ) ω μ o S - η c S o sin cos ( S - d / 2 ) ] + [ ω ɛ o S - S o sin cos ( S - d / 2 ) k - S - η c cos sin ( S - d / 2 ) ] × [ k + S + cos sin ( S + d / 2 ) ω μ o S + η c S o sin cos ( S + d / 2 ) ] .
d λ c = ( n / 2 ) [ ( ± μ c ɛ c ξ c + μ c ɛ c ξ c 2 + 1 ) 2 × μ c ɛ c μ 0 ɛ 0 - 1 ] - 0.5
E o e x = ± k + S + [ cos sin ( S + y ) - Γ o e k - k + cos sin ( S - y ) ] exp ( i β z ) ,
E o e y = ± i β S + [ cos sin ( S + y ) + Γ o e cos sin ( S - y ) ] exp ( i β z ) ,
E o e z = S + [ sin cos ( S + y ) + Γ o e S - S + sin cos ( S - y ) ] exp ( i β z ) ,
Γ o e ω μ o S + sin cos ( S + d / 2 ) η c S o k + cos sin ( S + d / 2 ) ω μ o S - sin cos ( S - d / 2 ) η c S o k - cos sin ( S - d / 2 ) ,
E o e x = ± k + S + [ cos sin ( S + d / 2 ) - Γ o e k - k + cos sin ( S - d / 2 ] ] × exp [ - S o ( y - d / 2 ) ] exp ( i β z ) ,
E o e y = ± i β ɛ c ɛ o S + [ cos sin ( S + d / 2 ) + Γ o e cos sin ( S - d / 2 ) ] × exp [ - S o ( y - d / 2 ) ] exp ( i β z ) ,
E o e z = S + [ sin cos ( S + d / 2 ) + Γ o e S - S + sin cos ( S - d / 2 ) ] × exp [ - S o ( y - d / 2 ) ] exp ( i β z ) .

Metrics