Abstract

Cesium atoms in a vapor cell have been trapped and cooled by using light from laser diodes. The 6S F = 4, m = 0 → 6S F = 3, m = 0 hyperfine clock transition was excited as these atoms then fell 2.5 cm in darkness. We observed a linewidth of 8 Hz with good signal-to-noise ratio. This gave a short-term fractional frequency resolution of 6.5×10-12sec, and there is potential for substantial improvement. The apparatus is extremely simple and compact, consisting of a small cesium vapor cell and two diode lasers.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Sesko, C. E. Wieman, Opt. Lett. 14, 269 (1989).
    [CrossRef] [PubMed]
  2. M. Kasevich, E. Riis, S. Chu, R. DeVoe, Phys. Rev. Lett. 63, 612 (1989).
    [CrossRef] [PubMed]
  3. J. Hall, M. Zhu, P. Buch, J. Opt. Soc. Am. B 6, 2194 (1989).
    [CrossRef]
  4. C. Monroe, W. Swann, H. Robinson, C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
    [CrossRef] [PubMed]
  5. C. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. (to be published).
  6. N. Ramsey, Molecular Beams (Oxford U. Press, London, 1956).

1990

C. Monroe, W. Swann, H. Robinson, C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

1989

Buch, P.

Chu, S.

M. Kasevich, E. Riis, S. Chu, R. DeVoe, Phys. Rev. Lett. 63, 612 (1989).
[CrossRef] [PubMed]

DeVoe, R.

M. Kasevich, E. Riis, S. Chu, R. DeVoe, Phys. Rev. Lett. 63, 612 (1989).
[CrossRef] [PubMed]

Hall, J.

Hollberg, L.

C. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. (to be published).

Kasevich, M.

M. Kasevich, E. Riis, S. Chu, R. DeVoe, Phys. Rev. Lett. 63, 612 (1989).
[CrossRef] [PubMed]

Monroe, C.

C. Monroe, W. Swann, H. Robinson, C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

Ramsey, N.

N. Ramsey, Molecular Beams (Oxford U. Press, London, 1956).

Riis, E.

M. Kasevich, E. Riis, S. Chu, R. DeVoe, Phys. Rev. Lett. 63, 612 (1989).
[CrossRef] [PubMed]

Robinson, H.

C. Monroe, W. Swann, H. Robinson, C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

Sesko, D. W.

Swann, W.

C. Monroe, W. Swann, H. Robinson, C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

Wieman, C.

C. Monroe, W. Swann, H. Robinson, C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

C. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. (to be published).

Wieman, C. E.

Zhu, M.

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. Lett.

M. Kasevich, E. Riis, S. Chu, R. DeVoe, Phys. Rev. Lett. 63, 612 (1989).
[CrossRef] [PubMed]

C. Monroe, W. Swann, H. Robinson, C. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

Other

C. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. (to be published).

N. Ramsey, Molecular Beams (Oxford U. Press, London, 1956).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Cesium energy-level diagram showing the relevant transitions.

Fig. 2
Fig. 2

Vapor cell with fluorescence detector and microwave horn. The arrows show the directions of the trapping laser beams. TEC, thermoelectric cooler.

Fig. 3
Fig. 3

Resonance spectrum of the |4, 0〉 → |3, 0〉 transition. The solid dots are the data, and the solid curve is a theoretical fit. Most of the dots represent the average of four measurements.

Tables (1)

Tables Icon

Table 1 Time Sequence Used to Observe the Microwave Transitiona

Metrics