Abstract

We demonstrate injection seeding of a pulsed, laser-pumped, titanium-doped-sapphire ring laser by both continuous-wave dye and diode lasers. As little as 100 μW of seed light is required to produce 4 mJ of 30-nsec TEM00 output having a bandwidth of less than 25 MHz FWHM. Using an atomic resonance filter we find that more than 99.9% of the energy is at the 780-nm seed wavelength. We discuss the spatial and longitudinal mode-matching requirements for successful seeding.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Brockman, C. H. Bair, J. C. Barnes, R. V. Hess, E. V. Browell, Opt. Lett. 11, 712 (1986).
    [CrossRef] [PubMed]
  2. C. H. Bair, P. Brockman, R. V. Hess, E. A. Modlin, IEEE J. Quantum Electron. 24, 1045 (1988).
    [CrossRef]
  3. G. A. Rhines, P. F. Moulton, Opt. Lett. 15, 434 (1990).
    [CrossRef]
  4. K. F. Wall, R. L. Aggarwal, M. D. Sciacca, H. J. Zeiger, R. E. Fahey, A. J. Strauss, Opt. Lett. 14, 180 (1989).
    [CrossRef] [PubMed]
  5. Y. K. Park, G. Giuliani, R. L. Byer, IEEE J. Quantum Electron. QE-20, 117 (1984).
    [CrossRef]
  6. B. Dahmani, L. Hollberg, R. Drullinger, Opt. Lett. 12, 876 (1987).
    [CrossRef] [PubMed]

1990 (1)

1989 (1)

1988 (1)

C. H. Bair, P. Brockman, R. V. Hess, E. A. Modlin, IEEE J. Quantum Electron. 24, 1045 (1988).
[CrossRef]

1987 (1)

1986 (1)

1984 (1)

Y. K. Park, G. Giuliani, R. L. Byer, IEEE J. Quantum Electron. QE-20, 117 (1984).
[CrossRef]

Aggarwal, R. L.

Bair, C. H.

C. H. Bair, P. Brockman, R. V. Hess, E. A. Modlin, IEEE J. Quantum Electron. 24, 1045 (1988).
[CrossRef]

P. Brockman, C. H. Bair, J. C. Barnes, R. V. Hess, E. V. Browell, Opt. Lett. 11, 712 (1986).
[CrossRef] [PubMed]

Barnes, J. C.

Brockman, P.

C. H. Bair, P. Brockman, R. V. Hess, E. A. Modlin, IEEE J. Quantum Electron. 24, 1045 (1988).
[CrossRef]

P. Brockman, C. H. Bair, J. C. Barnes, R. V. Hess, E. V. Browell, Opt. Lett. 11, 712 (1986).
[CrossRef] [PubMed]

Browell, E. V.

Byer, R. L.

Y. K. Park, G. Giuliani, R. L. Byer, IEEE J. Quantum Electron. QE-20, 117 (1984).
[CrossRef]

Dahmani, B.

Drullinger, R.

Fahey, R. E.

Giuliani, G.

Y. K. Park, G. Giuliani, R. L. Byer, IEEE J. Quantum Electron. QE-20, 117 (1984).
[CrossRef]

Hess, R. V.

C. H. Bair, P. Brockman, R. V. Hess, E. A. Modlin, IEEE J. Quantum Electron. 24, 1045 (1988).
[CrossRef]

P. Brockman, C. H. Bair, J. C. Barnes, R. V. Hess, E. V. Browell, Opt. Lett. 11, 712 (1986).
[CrossRef] [PubMed]

Hollberg, L.

Modlin, E. A.

C. H. Bair, P. Brockman, R. V. Hess, E. A. Modlin, IEEE J. Quantum Electron. 24, 1045 (1988).
[CrossRef]

Moulton, P. F.

Park, Y. K.

Y. K. Park, G. Giuliani, R. L. Byer, IEEE J. Quantum Electron. QE-20, 117 (1984).
[CrossRef]

Rhines, G. A.

Sciacca, M. D.

Strauss, A. J.

Wall, K. F.

Zeiger, H. J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental layout illustrating the three-mirror slave cavity. Photodiodes PD1 and PD2 monitor the forward- and backward-propagating light in the laser cavity. A confocal étalon of 2-GHz free spectral range (FSR) is used to measure the laser linewidth and frequency relative to the seed laser.

Fig. 2
Fig. 2

Injection-seeding results with 0.1 mW of seed power while the slave oscillator is pumped at 1.5 times threshold. The slave-cavity length is slowly ramped while the intracavity seed intensity 500 nsec before the Ti:S rod is pumped (solid curve) is monitored. The maxima in the circulating seed intensity indicate cavity lengths for which the slave cavity is resonant with the seed-laser frequency. The forward- and backward-propagating output pulse energies from the slave oscillator are simultaneously monitored and plotted in arbitrary units as the dashed and dotted curves, respectively.

Fig. 3
Fig. 3

Injection-seeding results with 10 mW of seed power while the slave oscillator is pumped at 1.5 times threshold. As expected, the seeding range increases with increased seed power.

Fig. 4
Fig. 4

Injection seeding results with 10 mW of seed power while the slave oscillator is pumped at 2.5 times threshold. Compared with that of Fig. 3, the seeding range clearly increases with increased pump energy.

Fig. 5
Fig. 5

Spectrum of the cw laser (solid curve) and pulsed output of the injection-seeded laser. The dotted (dashed) curve is obtained when the slave-cavity resonance is offset to the red (blue) of the seed frequency. The difference in frequency between the pulsed output beams is determined by the degree of offset between the master and slave oscillators. The mean of the pulsed output frequencies is slightly offset (−7 ± 5 MHz) with respect to the seed beam and is consistent with a pump-induced change in the index of refraction of the Ti:S.

Metrics