Abstract

The use of solitons is proposed for interferometric switching in birefringent optical fibers. Pulse propagation in the fiber is modeled by the coupled nonlinear Schrödinger equation, in which the ratio between the self-coupling and cross-coupling terms depends on the ellipticity of the fiber eigenmodes. It is shown that shadows occur unless the self-coupling and the cross-coupling are equal and that these shadows seriously affect the contrast ratio attainable by a switch. These two couplings become equal at an ellipticity angle θ ≈ 35°, and, within a tolerance of θ = ± 5°, a contrast ratio of 10 or more can be achieved.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
    [CrossRef]
  2. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
    [CrossRef]
  3. N. J. Doran, D. Wood, Opt. Lett. 13, 56 (1988).
    [CrossRef] [PubMed]
  4. S. Trillo, S. Wabnitz, E. M. Wright, G. I. Stegeman, Opt. Lett. 13, 672 (1988).
    [CrossRef] [PubMed]
  5. M. J. LaGasse, D. Liu-Wong, J. G. Fujimoto, H. A. Haus, Opt. Lett. 14, 311 (1989).
    [CrossRef] [PubMed]
  6. C. R. Menyuk, IEEE J. Quantum Electron. 25, 2674 (1989).
    [CrossRef]
  7. C. R. Menyuk, IEEE J. Quantum Electron. QE-23, 174 (1987).
    [CrossRef]
  8. S. V. Manakov, Sov. Phys. JETP 38, 248 (1974).
  9. J. J. Ablowitz, H. Segur, Soliton and the Inverse Scattering Transform (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1981).
    [CrossRef]
  10. C. R. Menyuk, J. Opt. Soc. Am. B 5, 392 (1988).
    [CrossRef]

1989 (2)

1988 (3)

1987 (1)

C. R. Menyuk, IEEE J. Quantum Electron. QE-23, 174 (1987).
[CrossRef]

1980 (1)

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

1974 (1)

S. V. Manakov, Sov. Phys. JETP 38, 248 (1974).

1973 (1)

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

Ablowitz, J. J.

J. J. Ablowitz, H. Segur, Soliton and the Inverse Scattering Transform (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1981).
[CrossRef]

Doran, N. J.

Fujimoto, J. G.

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Hasegawa, A.

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

Haus, H. A.

LaGasse, M. J.

Liu-Wong, D.

Manakov, S. V.

S. V. Manakov, Sov. Phys. JETP 38, 248 (1974).

Menyuk, C. R.

C. R. Menyuk, IEEE J. Quantum Electron. 25, 2674 (1989).
[CrossRef]

C. R. Menyuk, J. Opt. Soc. Am. B 5, 392 (1988).
[CrossRef]

C. R. Menyuk, IEEE J. Quantum Electron. QE-23, 174 (1987).
[CrossRef]

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Segur, H.

J. J. Ablowitz, H. Segur, Soliton and the Inverse Scattering Transform (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1981).
[CrossRef]

Stegeman, G. I.

Stolen, R. H.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Tappert, F.

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

Trillo, S.

Wabnitz, S.

Wood, D.

Wright, E. M.

Appl. Phys. Lett. (1)

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[CrossRef]

IEEE J. Quantum Electron. (2)

C. R. Menyuk, IEEE J. Quantum Electron. 25, 2674 (1989).
[CrossRef]

C. R. Menyuk, IEEE J. Quantum Electron. QE-23, 174 (1987).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Sov. Phys. JETP (1)

S. V. Manakov, Sov. Phys. JETP 38, 248 (1974).

Other (1)

J. J. Ablowitz, H. Segur, Soliton and the Inverse Scattering Transform (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1981).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Signal pulse during soliton interaction for B = 2/3 (a) before interaction and (b) after interaction. The u polarization is shown as a solid curve, and the υ polarization is shown as a dashed curve.

Fig. 2
Fig. 2

Phase and time shifts of the signal soliton for B = 2/3.

Fig. 3
Fig. 3

Phase and time shifts of the signal soliton for B = 1.

Fig. 4
Fig. 4

Simulated contrast ratios versus ξ for various ellipticity angles from 20° to 50°.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

i u ξ + u s + 1 2 2 u s 2 + ( | u | 2 + B | υ | 2 ) u = 0 , i υ ξ υ s + 1 2 2 υ s 2 + ( B | u | 2 + | υ | 2 ) υ = 0 ,
B = 2 a + 2 b sin 2 θ 2 a + b cos 2 θ ,
u = A 1 sech [ A 1 ( s s 1 δξ ) ] exp [ i ( A 1 2 2 ξ + ϕ 1 ) ] , υ = A 2 sech [ A 2 ( s s 2 δξ ) ] exp [ i ( A 2 2 2 ξ + ϕ 2 ) ] ,
Δ s = 1 2 A 1 ln [ 4 δ 2 + ( A 1 + A 2 ) 2 4 δ 2 + ( A 1 A 2 ) 2 ] ,
Δ ϕ = arg [ 2 δ + i ( A i + A 2 ) 2 δ + i ( A 1 A 2 ) ] .
Δ s = 1 α ln α 1 + α 2 + 2 α α 1 + α 2 2 α 2 α ln α + ( α 2 + 4 δ 2 ) 1 / 2 2 δ ,
u = α sech { α [ s ( s 0 + Δ s ) ξδ ] } × exp [ i ( α 2 2 ξ + π + ) ] ,
| α sech α s α sech [ α ( s Δ s ) ] exp ( i ) | 2 × d s = α [ 4 4 Δ s cos sinh ( Δ s ) ] .
r = 2 / [ 1 Δ s cos sinh ( Δ s ) ] .

Metrics