Abstract

The design and performance of polarization-independent isolators that are substantially insensitive to variations of temperature and wavelength are presented. Three single-mode fiber isolators have been designed, constructed, and tested. The first isolator is a 1.3-μm two-stage isolator that has more than 40 dB of isolation and less than 2.0 dB of insertion loss over the temperature range of 15–70°C. The second isolator is a two-stage dual-wavelength isolator with an insertion loss of less than 4 dB and an isolation of better than 35 dB at 1.3 and 1.52 μm over the temperature range of 15–75°C. The third isolator is a three-stage isolator with an insertion loss of less than 2.5 dB and an isolation of better than 63 dB over the wavelength range 1275–1355 nm.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Shirasaki, K. Asama, Appl. Opt. 21, 4296 (1982).
    [CrossRef] [PubMed]
  2. T. Matsumoto, Trans. Inst. Electr. Commun. Eng. Jpn. 62, 516 (1979).
  3. K. W. Chang, W. Sorin, IEEE Photon. Tech. Lett. 1(3), 68 (1989).
    [CrossRef]
  4. N. Fukushima, M. Shirasaki, H. Nakajima, K. Asama, Trans. Inst. Electr. Commun. Eng. Jpn. 67, 355 (1984).
  5. M. Shirasaki, N. Fukushima, H. Nakajima, K. Asama, in Proceedings of European Conference on Optical Communication (ECOC, Barcelona, 1986), Vol. 2, p. 11.
  6. K. Machida, Y. Asahara, J. Magnet. Soc. Jpn. 11, 347 (1987).
  7. K. Machida, Y. Asahara, H. Ishikawa, K. Nakajima, Y. Fujii, J. Appl. Phys. 61, 3256 (1987).
    [CrossRef]
  8. F. A. Jenkins, H. E. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, New York, 1976), pp. 544–589.
  9. K. Shiraishi, S. Kawakami, Opt. Lett. 12, 462 (1987).
    [CrossRef] [PubMed]

1989 (1)

K. W. Chang, W. Sorin, IEEE Photon. Tech. Lett. 1(3), 68 (1989).
[CrossRef]

1987 (3)

K. Machida, Y. Asahara, J. Magnet. Soc. Jpn. 11, 347 (1987).

K. Machida, Y. Asahara, H. Ishikawa, K. Nakajima, Y. Fujii, J. Appl. Phys. 61, 3256 (1987).
[CrossRef]

K. Shiraishi, S. Kawakami, Opt. Lett. 12, 462 (1987).
[CrossRef] [PubMed]

1984 (1)

N. Fukushima, M. Shirasaki, H. Nakajima, K. Asama, Trans. Inst. Electr. Commun. Eng. Jpn. 67, 355 (1984).

1982 (1)

1979 (1)

T. Matsumoto, Trans. Inst. Electr. Commun. Eng. Jpn. 62, 516 (1979).

Asahara, Y.

K. Machida, Y. Asahara, J. Magnet. Soc. Jpn. 11, 347 (1987).

K. Machida, Y. Asahara, H. Ishikawa, K. Nakajima, Y. Fujii, J. Appl. Phys. 61, 3256 (1987).
[CrossRef]

Asama, K.

N. Fukushima, M. Shirasaki, H. Nakajima, K. Asama, Trans. Inst. Electr. Commun. Eng. Jpn. 67, 355 (1984).

M. Shirasaki, K. Asama, Appl. Opt. 21, 4296 (1982).
[CrossRef] [PubMed]

M. Shirasaki, N. Fukushima, H. Nakajima, K. Asama, in Proceedings of European Conference on Optical Communication (ECOC, Barcelona, 1986), Vol. 2, p. 11.

Chang, K. W.

K. W. Chang, W. Sorin, IEEE Photon. Tech. Lett. 1(3), 68 (1989).
[CrossRef]

Fujii, Y.

K. Machida, Y. Asahara, H. Ishikawa, K. Nakajima, Y. Fujii, J. Appl. Phys. 61, 3256 (1987).
[CrossRef]

Fukushima, N.

N. Fukushima, M. Shirasaki, H. Nakajima, K. Asama, Trans. Inst. Electr. Commun. Eng. Jpn. 67, 355 (1984).

M. Shirasaki, N. Fukushima, H. Nakajima, K. Asama, in Proceedings of European Conference on Optical Communication (ECOC, Barcelona, 1986), Vol. 2, p. 11.

Ishikawa, H.

K. Machida, Y. Asahara, H. Ishikawa, K. Nakajima, Y. Fujii, J. Appl. Phys. 61, 3256 (1987).
[CrossRef]

Jenkins, F. A.

F. A. Jenkins, H. E. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, New York, 1976), pp. 544–589.

Kawakami, S.

Machida, K.

K. Machida, Y. Asahara, J. Magnet. Soc. Jpn. 11, 347 (1987).

K. Machida, Y. Asahara, H. Ishikawa, K. Nakajima, Y. Fujii, J. Appl. Phys. 61, 3256 (1987).
[CrossRef]

Matsumoto, T.

T. Matsumoto, Trans. Inst. Electr. Commun. Eng. Jpn. 62, 516 (1979).

Nakajima, H.

N. Fukushima, M. Shirasaki, H. Nakajima, K. Asama, Trans. Inst. Electr. Commun. Eng. Jpn. 67, 355 (1984).

M. Shirasaki, N. Fukushima, H. Nakajima, K. Asama, in Proceedings of European Conference on Optical Communication (ECOC, Barcelona, 1986), Vol. 2, p. 11.

Nakajima, K.

K. Machida, Y. Asahara, H. Ishikawa, K. Nakajima, Y. Fujii, J. Appl. Phys. 61, 3256 (1987).
[CrossRef]

Shiraishi, K.

Shirasaki, M.

N. Fukushima, M. Shirasaki, H. Nakajima, K. Asama, Trans. Inst. Electr. Commun. Eng. Jpn. 67, 355 (1984).

M. Shirasaki, K. Asama, Appl. Opt. 21, 4296 (1982).
[CrossRef] [PubMed]

M. Shirasaki, N. Fukushima, H. Nakajima, K. Asama, in Proceedings of European Conference on Optical Communication (ECOC, Barcelona, 1986), Vol. 2, p. 11.

Sorin, W.

K. W. Chang, W. Sorin, IEEE Photon. Tech. Lett. 1(3), 68 (1989).
[CrossRef]

White, H. E.

F. A. Jenkins, H. E. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, New York, 1976), pp. 544–589.

Appl. Opt. (1)

IEEE Photon. Tech. Lett. (1)

K. W. Chang, W. Sorin, IEEE Photon. Tech. Lett. 1(3), 68 (1989).
[CrossRef]

J. Appl. Phys. (1)

K. Machida, Y. Asahara, H. Ishikawa, K. Nakajima, Y. Fujii, J. Appl. Phys. 61, 3256 (1987).
[CrossRef]

J. Magnet. Soc. Jpn. (1)

K. Machida, Y. Asahara, J. Magnet. Soc. Jpn. 11, 347 (1987).

Opt. Lett. (1)

Trans. Inst. Electr. Commun. Eng. Jpn. (2)

N. Fukushima, M. Shirasaki, H. Nakajima, K. Asama, Trans. Inst. Electr. Commun. Eng. Jpn. 67, 355 (1984).

T. Matsumoto, Trans. Inst. Electr. Commun. Eng. Jpn. 62, 516 (1979).

Other (2)

M. Shirasaki, N. Fukushima, H. Nakajima, K. Asama, in Proceedings of European Conference on Optical Communication (ECOC, Barcelona, 1986), Vol. 2, p. 11.

F. A. Jenkins, H. E. White, Fundamentals of Optics, 4th ed. (McGraw-Hill, New York, 1976), pp. 544–589.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental configuration of components used in the construction of the two-stage isolator.

Fig. 2
Fig. 2

End view of the ordered two-stage isolator components. Spatial walk-off is provided by rutile crystals of thickness 2 a and a. Faraday rotation is provided by Bi-YIG films. The circles and bisecting lines indicate the spatial position and polarization direction of each beam as it travels between the components of the isolator. The longer lines are the major components, and the shorter lines are the error components.

Fig. 3
Fig. 3

Temperature dependence of the two-stage isolator configured as in Fig. 2. The dashed curve is the insertion loss, and the solid curve is the isolation.

Fig. 4
Fig. 4

Temperature dependence of the two-stage dual-wavelength optical isolator configured as in Fig. 2. The two upper curves are the insertion loss, and the two lower curves are the isolation. Solid curves, 1.3 μm; dashed curves, 1.52 μm.

Fig. 5
Fig. 5

End view of the ordered three-stage optical isolator components with isolation equal to −10 × log10[sin2θ1)sin2θ2)sin2θ3)] dB.

Fig. 6
Fig. 6

Wavelength sensitivity of the three-stage isolator configured as in Fig. 5. The dashed curve is the insertion loss, and the solid curve is the isolation.

Metrics