Abstract

We describe an experimental investigation of Ti:Al2O3 unstable-resonator lasers. A near-diffraction-limited output of 430 mJ in a 10-nsec pulse at 10 Hz has been obtained, which is to our knowledge the highest peak power from a Ti:Al2O3 laser reported. We report results for both standing-wave and traveling-wave oscillators, demonstrating line narrowing by means of prism tuning and injection seeding.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. Moulton, Solid State Research Rep. DTIC AD-A124305/4 (MIT Lincoln Laboratory, Lexington, Mass., 1982), pp. 15–21.
  2. Initial results were reported by G. A. Rines, P. F. Moulton, J. Harrison, in Tunable Solid-State Lasers, Vol. 5 of OSA Proceedings Series, M. L. Shand, H. P. Jenssen, eds. (Optical Society of America, Washington, D.C., 1989), p. 2.
  3. N. P. Barnes, D. K. Remelius, Tunable Solid-State Lasers For Remote Sensing (Stanford U. Press, Stanford, Calif., 1984), Vol. 51, pp. 78–81.
  4. G. F. Albrecht, J. M. Eggelston, J. J. Ewing, Opt. Commun. 52, 401 (1985).
    [CrossRef]
  5. P. F. Moulton, J. Opt. Soc. Am. B 3, 125 (1986).
    [CrossRef]
  6. A. Parent, P. Lavigne, Opt. Lett. 14, 399 (1989).
    [CrossRef] [PubMed]

1989 (1)

1986 (1)

1985 (1)

G. F. Albrecht, J. M. Eggelston, J. J. Ewing, Opt. Commun. 52, 401 (1985).
[CrossRef]

Albrecht, G. F.

G. F. Albrecht, J. M. Eggelston, J. J. Ewing, Opt. Commun. 52, 401 (1985).
[CrossRef]

Barnes, N. P.

N. P. Barnes, D. K. Remelius, Tunable Solid-State Lasers For Remote Sensing (Stanford U. Press, Stanford, Calif., 1984), Vol. 51, pp. 78–81.

Eggelston, J. M.

G. F. Albrecht, J. M. Eggelston, J. J. Ewing, Opt. Commun. 52, 401 (1985).
[CrossRef]

Ewing, J. J.

G. F. Albrecht, J. M. Eggelston, J. J. Ewing, Opt. Commun. 52, 401 (1985).
[CrossRef]

Harrison, J.

Initial results were reported by G. A. Rines, P. F. Moulton, J. Harrison, in Tunable Solid-State Lasers, Vol. 5 of OSA Proceedings Series, M. L. Shand, H. P. Jenssen, eds. (Optical Society of America, Washington, D.C., 1989), p. 2.

Lavigne, P.

Moulton, P. F.

P. F. Moulton, J. Opt. Soc. Am. B 3, 125 (1986).
[CrossRef]

P. F. Moulton, Solid State Research Rep. DTIC AD-A124305/4 (MIT Lincoln Laboratory, Lexington, Mass., 1982), pp. 15–21.

Initial results were reported by G. A. Rines, P. F. Moulton, J. Harrison, in Tunable Solid-State Lasers, Vol. 5 of OSA Proceedings Series, M. L. Shand, H. P. Jenssen, eds. (Optical Society of America, Washington, D.C., 1989), p. 2.

Parent, A.

Remelius, D. K.

N. P. Barnes, D. K. Remelius, Tunable Solid-State Lasers For Remote Sensing (Stanford U. Press, Stanford, Calif., 1984), Vol. 51, pp. 78–81.

Rines, G. A.

Initial results were reported by G. A. Rines, P. F. Moulton, J. Harrison, in Tunable Solid-State Lasers, Vol. 5 of OSA Proceedings Series, M. L. Shand, H. P. Jenssen, eds. (Optical Society of America, Washington, D.C., 1989), p. 2.

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

G. F. Albrecht, J. M. Eggelston, J. J. Ewing, Opt. Commun. 52, 401 (1985).
[CrossRef]

Opt. Lett. (1)

Other (3)

P. F. Moulton, Solid State Research Rep. DTIC AD-A124305/4 (MIT Lincoln Laboratory, Lexington, Mass., 1982), pp. 15–21.

Initial results were reported by G. A. Rines, P. F. Moulton, J. Harrison, in Tunable Solid-State Lasers, Vol. 5 of OSA Proceedings Series, M. L. Shand, H. P. Jenssen, eds. (Optical Society of America, Washington, D.C., 1989), p. 2.

N. P. Barnes, D. K. Remelius, Tunable Solid-State Lasers For Remote Sensing (Stanford U. Press, Stanford, Calif., 1984), Vol. 51, pp. 78–81.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematics of the reonators used in the Ti:Al2O3 oscillator experiments: (a) standing-wave, positive-branch resonator; (b) asymmetric, positive-branch, unstable ring resonator. HR, high-reflectivity mirror; PZT, piezoelectric translator.

Fig. 2
Fig. 2

Pulse buildup time data for the three resonators described in Table 1. Squares, standing-wave HRDM (M = 6.7); triangles, ring PRDM (M = 1.67); circles, standing-wave GRM (M = 1.65).

Fig. 3
Fig. 3

Pulse-width data for the three resonators described in Table 1. Squares, standing-wave HRDM (M = 6.7); triangles, ring PRDM (M = 1.67); circles, standing-wave GRM (M = 1.65)

Fig. 4
Fig. 4

(Top) Far-field two-dimensional intensity spatial profile of the GRM unstble-resonator output and (bottom) a near-field one-dimensional intensity profile (the solid curve) taken through the center of the beam and a Gaussian fit (the dashed curve).

Fig. 5
Fig. 5

Wavelength spectra of the unstable ring resonator shown in Fig. 1(b) with and without injection seeding.

Tables (1)

Tables Icon

Table 1 Summary of Ti:Al2O3 Unstable-Resonator Data

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R = R 0 [ 1 ( r / 0 . 91 mm ) 3 ] for r 0 . 86 mm , R = exp [ 13 ( r 0 . 62 mm ) ] for r > 0 . 86 mm ,

Metrics