Abstract

We experimentally demonstrate that high-reflectivity photosensitive gratings written in optical fibers can be used to detect vibrations that produce length changes of less than 50 nm. This sensitivity to external perturbations can also explain the high-frequency components often observed during the growth of these gratings.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
    [Crossref]
  2. B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, Opt. Lett. 3, 66 (1978).
    [Crossref] [PubMed]
  3. G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, F. J. Leonberger, Proc. Soc. Photo-Opt. Instrum. Eng. 79, 104 (1987).
  4. W. B. Spillman, B. R. Kline, L. B. Maurice, P. L. Fuhr, Appl. Opt. 28, 3166 (1989).
    [Crossref] [PubMed]
  5. V. T. Chitnis, S. Kumar, D. Sen, IEEE J. Lightwave Technol. 7, 687 (1989).
    [Crossref]
  6. D. K. W. Lam, B. K. Garside, Appl. Opt. 20, 440 (1981).
    [Crossref] [PubMed]
  7. R. E. Bolz, G. L. Tuve, eds., CRC Handbook of Tables for Applied Engineering Science (Chemical Rubber Company, Cleveland, Ohio, 1970).
  8. J. Stone, J. Appl. Phys. 62, 4371 (1987).
    [Crossref]
  9. J. Bures, J. Lapierre, D. Pascale, Appl. Phys. Lett. 37, 860 (1980).
    [Crossref]
  10. H. Kolsky, Stress Waves in Solids (Clarendon, Oxford, 1953).

1989 (2)

W. B. Spillman, B. R. Kline, L. B. Maurice, P. L. Fuhr, Appl. Opt. 28, 3166 (1989).
[Crossref] [PubMed]

V. T. Chitnis, S. Kumar, D. Sen, IEEE J. Lightwave Technol. 7, 687 (1989).
[Crossref]

1987 (2)

J. Stone, J. Appl. Phys. 62, 4371 (1987).
[Crossref]

G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, F. J. Leonberger, Proc. Soc. Photo-Opt. Instrum. Eng. 79, 104 (1987).

1981 (1)

1980 (1)

J. Bures, J. Lapierre, D. Pascale, Appl. Phys. Lett. 37, 860 (1980).
[Crossref]

1978 (2)

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, Opt. Lett. 3, 66 (1978).
[Crossref] [PubMed]

Bures, J.

J. Bures, J. Lapierre, D. Pascale, Appl. Phys. Lett. 37, 860 (1980).
[Crossref]

Chitnis, V. T.

V. T. Chitnis, S. Kumar, D. Sen, IEEE J. Lightwave Technol. 7, 687 (1989).
[Crossref]

Dunphy, J. R.

G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, F. J. Leonberger, Proc. Soc. Photo-Opt. Instrum. Eng. 79, 104 (1987).

Farina, J. D.

G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, F. J. Leonberger, Proc. Soc. Photo-Opt. Instrum. Eng. 79, 104 (1987).

Fuhr, P. L.

Fujii, Y.

B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, Opt. Lett. 3, 66 (1978).
[Crossref] [PubMed]

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Garside, B. K.

Glenn, W. H.

G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, F. J. Leonberger, Proc. Soc. Photo-Opt. Instrum. Eng. 79, 104 (1987).

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, Opt. Lett. 3, 66 (1978).
[Crossref] [PubMed]

Johnson, D. C.

B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, Opt. Lett. 3, 66 (1978).
[Crossref] [PubMed]

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, Opt. Lett. 3, 66 (1978).
[Crossref] [PubMed]

Kline, B. R.

Kolsky, H.

H. Kolsky, Stress Waves in Solids (Clarendon, Oxford, 1953).

Kumar, S.

V. T. Chitnis, S. Kumar, D. Sen, IEEE J. Lightwave Technol. 7, 687 (1989).
[Crossref]

Lam, D. K. W.

Lapierre, J.

J. Bures, J. Lapierre, D. Pascale, Appl. Phys. Lett. 37, 860 (1980).
[Crossref]

Leonberger, F. J.

G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, F. J. Leonberger, Proc. Soc. Photo-Opt. Instrum. Eng. 79, 104 (1987).

Maurice, L. B.

Meltz, G.

G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, F. J. Leonberger, Proc. Soc. Photo-Opt. Instrum. Eng. 79, 104 (1987).

Pascale, D.

J. Bures, J. Lapierre, D. Pascale, Appl. Phys. Lett. 37, 860 (1980).
[Crossref]

Sen, D.

V. T. Chitnis, S. Kumar, D. Sen, IEEE J. Lightwave Technol. 7, 687 (1989).
[Crossref]

Spillman, W. B.

Stone, J.

J. Stone, J. Appl. Phys. 62, 4371 (1987).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

J. Bures, J. Lapierre, D. Pascale, Appl. Phys. Lett. 37, 860 (1980).
[Crossref]

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[Crossref]

IEEE J. Lightwave Technol. (1)

V. T. Chitnis, S. Kumar, D. Sen, IEEE J. Lightwave Technol. 7, 687 (1989).
[Crossref]

J. Appl. Phys. (1)

J. Stone, J. Appl. Phys. 62, 4371 (1987).
[Crossref]

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

G. Meltz, J. R. Dunphy, W. H. Glenn, J. D. Farina, F. J. Leonberger, Proc. Soc. Photo-Opt. Instrum. Eng. 79, 104 (1987).

Other (2)

H. Kolsky, Stress Waves in Solids (Clarendon, Oxford, 1953).

R. E. Bolz, G. L. Tuve, eds., CRC Handbook of Tables for Applied Engineering Science (Chemical Rubber Company, Cleveland, Ohio, 1970).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Reflectivity of a uniform phase grating as a function of the normalized detuning Δβ/κ (κL = 2.29, λ = 488 nm).

Fig. 2
Fig. 2

Experimental setup used to write photosensitive gratings. BS’s, beam splitters; IF’s, interference filters; OF, optical fiber; P0, argon laser power detector; Pt, transmitted-power detector (λ = 488 nm); Pr, reflected-power detector (λ = 488 nm); Ph, transmitted-power detector (λ = 632.8 nm).

Fig. 3
Fig. 3

(a) Transmitted (lower curve) and reflected (upper curve) argon laser power from a photosensitive grating sampled at 1 kHz. (b) The amplitude in arbitrary units of the frequency spectrum of the reflected-power signal; the inset shows the growth curves of the grating.

Fig. 4
Fig. 4

Calculated modulation of the reflectivity of a photosensitive grating assuming that f1 = 120.12 Hz, f2 = 125.98 Hz, A1 = 0.060 μm, A2 = 0.045 μm, and Δβ/κ = 0.7.

Fig. 5
Fig. 5

Amplitude in arbitrary units of the frequency spectrum of the argon laser power transmitted through a photosensitive grating when a vibration is induced in the fiber at 132 Hz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R = κ 2 sinh 2 ( Ω L ) Δ β 2 sinh 2 ( Ω L ) + Ω 2 cosh 2 ( Ω L ) ,
d ( Δ β ) = ( β 0 1 n 0 n 0 s + π Λ ) d L L ,
L = L 0 + A 1 cos ( 2 π f 1 t ) + A 2 cos ( 2 π f 2 t ) .
f m = m 2 L E ρ ,

Metrics