Abstract

A transient noise measurement scheme is described to observe pulsed squeezing generated by means of parametric downconversion of a Q-switched laser. In the usual implementation of balanced-homodyne detection, the vacuum-state noise level is determined by the average local oscillator power. However, if the local oscillator is derived from a pulsed laser, as is the case in our experiments, the associated peak power can easily saturate the detectors along with the subsequent electronics. To overcome this limitation we have implemented a hybrid frequency-time-domain measurement scheme in which the vacuum-state noise level is determined by the peak, instead of the average, local oscillator power, thus avoiding the saturation problem.

© 1990 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient homodyne measurement of picosecond squeezed pulses with pulse shaping technique

Yujiro Eto, Akane Koshio, Akito Ohshiro, Junichi Sakurai, Keiko Horie, Takuya Hirano, and Masahide Sasaki
Opt. Lett. 36(23) 4653-4655 (2011)

Broadband squeezing of light by pulse excitation

Takuya Hirano and Masahiro Matsuoka
Opt. Lett. 15(20) 1153-1155 (1990)

Squeezed states of light from an optical parametric oscillator

Ling-An Wu, Min Xiao, and H. J. Kimble
J. Opt. Soc. Am. B 4(10) 1465-1475 (1987)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription