Abstract

We describe a method to create and reconstruct computer-generated Fourier-transform holograms in photorefractive materials. Holographic reconstructions are obtained from computer-generated data by imaging computer-generated holograms into a BaTiO3 crystal, using either spatially coherent or incoherent light. The intensity variations in the images produce a phase hologram in the crystal by the photorefractive effect. The diffraction efficiency of the holographic reconstructions depends on imaging system f number, crystal orientation, and read-beam polarization. Because these holograms are recorded by using (incoherent or coherent) images rather than coherent interference patterns, our system provides a new technique for the holographic display of computer-generated information.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Gunter, Phys. Rep. 93, 199 (1982).
    [CrossRef]
  2. B. R. Brown, A. W. Lohmann, Appl. Opt. 5, 967 (1966).
    [CrossRef] [PubMed]
  3. R. Hauck, O. Bryngdahl, J. Opt. Soc. Am. A 1, 5 (1984).
    [CrossRef]
  4. M. A. Seldowitz, J. P. Allebach, D. W. Sweeney, Appl. Opt. 26, 2788 (1987).
    [CrossRef] [PubMed]
  5. F. Wyrowski, O. Bryngdahl, J. Opt. Soc. Am. A 5, 1058 (1988).
    [CrossRef]
  6. D. Leseberg, C. Frère, Appl. Opt. 27, 3020 (1988).
    [CrossRef] [PubMed]
  7. J. J. Burch, Proc. IEEE 55, 599 (1967).
    [CrossRef]
  8. W. J. Dallas, in The Computer in Optical Research: Methods and Applications, B. Frieden, ed. (Springer-Verlag, New York, 1980), p. 321.
  9. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 125–129.
  10. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  11. J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
    [CrossRef]
  12. D. Faklis, D. A. Buralli, G. M. Morris, in Digest of Annual Meeting of the Optical Society of America (Optical Society of America, Washington, D.C., 1987), paper TuE3.

1988 (2)

1987 (1)

1984 (1)

1982 (1)

P. Gunter, Phys. Rep. 93, 199 (1982).
[CrossRef]

1980 (1)

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

1969 (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

1967 (1)

J. J. Burch, Proc. IEEE 55, 599 (1967).
[CrossRef]

1966 (1)

Allebach, J. P.

Brown, B. R.

Bryngdahl, O.

Buralli, D. A.

D. Faklis, D. A. Buralli, G. M. Morris, in Digest of Annual Meeting of the Optical Society of America (Optical Society of America, Washington, D.C., 1987), paper TuE3.

Burch, J. J.

J. J. Burch, Proc. IEEE 55, 599 (1967).
[CrossRef]

Dallas, W. J.

W. J. Dallas, in The Computer in Optical Research: Methods and Applications, B. Frieden, ed. (Springer-Verlag, New York, 1980), p. 321.

Faklis, D.

D. Faklis, D. A. Buralli, G. M. Morris, in Digest of Annual Meeting of the Optical Society of America (Optical Society of America, Washington, D.C., 1987), paper TuE3.

Feinberg, J.

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Frère, C.

Goodman, J.

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 125–129.

Gunter, P.

P. Gunter, Phys. Rep. 93, 199 (1982).
[CrossRef]

Hauck, R.

Heiman, D.

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Hellwarth, R. W.

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Leseberg, D.

Lohmann, A. W.

Morris, G. M.

D. Faklis, D. A. Buralli, G. M. Morris, in Digest of Annual Meeting of the Optical Society of America (Optical Society of America, Washington, D.C., 1987), paper TuE3.

Seldowitz, M. A.

Sweeney, D. W.

Tanguay, A. R.

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

Wyrowski, F.

Appl. Opt. (3)

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

J. Appl. Phys. (1)

J. Feinberg, D. Heiman, A. R. Tanguay, R. W. Hellwarth, J. Appl. Phys. 51, 1297 (1980).
[CrossRef]

J. Opt. Soc. Am. A (2)

Phys. Rep. (1)

P. Gunter, Phys. Rep. 93, 199 (1982).
[CrossRef]

Proc. IEEE (1)

J. J. Burch, Proc. IEEE 55, 599 (1967).
[CrossRef]

Other (3)

W. J. Dallas, in The Computer in Optical Research: Methods and Applications, B. Frieden, ed. (Springer-Verlag, New York, 1980), p. 321.

J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 125–129.

D. Faklis, D. A. Buralli, G. M. Morris, in Digest of Annual Meeting of the Optical Society of America (Optical Society of America, Washington, D.C., 1987), paper TuE3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental geometry for creating computer-generated holograms in photorefractive materials. In this system a computer-generated hologram (CGH) is imaged into the BaTiO3 crystal, using either coherent or incoherent illumination. The resulting photorefractive hologram is read with a He–Ne read beam.

Fig. 2
Fig. 2

(a) Photoenlarged portion of a Burch computer-generated hologram. Although it appears binary in the photograph, the hologram actually contains 80 gray levels, (b) Reconstruction from a film-written Burch hologram showing the speckling produced by the random phase used in the algorithm, (c) Reconstruction from the photorefractive hologram created by placing the Burch hologram into the experimental geometry of Fig. 1 and using coherent imaging illumination, (d) Reconstruction from the incoherent system showing efficiency lower than that in (c).

Fig. 3
Fig. 3

Plot of the diffraction efficiency η versus the imaging-system f number for the coherent imaging geometry. The solid curves connect data points for each angle γ.

Fig. 4
Fig. 4

(a) Plot of diffraction efficiency η obtained from a photorefractive Ronchi ruling versus γ, the angle between the grating vector and the crystal’s C axis for several positions of the read-beam polarization; p = 0 for polarization parallel to the C axis, (b) Plot of the diffraction efficiency versus p; the solid curves simply connect data points and are not theoretical curves.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

t ( x , y ) = 0 . 5 { 1 + P ( x , y ) cos [ 2 π α x θ ( x , y ) ] } .
η ~ | e ˆ 2 * · ˜ ˜ · r ˜ ˜ · κ ˆ g · ˜ ˜ · e ˆ 1 | 2 for η 1 .

Metrics