Abstract

We describe the two-wavelength operation of the nonlinear fiber loop mirror. In this mode of operation a high-power signal at one wavelength switches a low-power signal at another wavelength. This device is investigated both theoretically and experimentally. The experimental results show that the nonlinear loop mirror performs as an optical modulator that consists of all-fiber components.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Doran, D. Wood, Opt. Lett. 13, 56 (1988).
    [CrossRef] [PubMed]
  2. K. Otsuka, Opt. Lett. 8, 471 (1983).
    [CrossRef] [PubMed]
  3. N. J. Doran, D. S. Forrester, B. K. Nayar, Electron. Lett. 25, 267 (1989).
    [CrossRef]
  4. K. J. Blow, N. J. Doran, B. K. Nayar, Opt. Lett. 14, 754 (1989).
    [CrossRef] [PubMed]
  5. A. M. Weiner, J. P. Heritage, J. A. Salehi, Opt. Lett. 13, 300 (1988).
    [CrossRef] [PubMed]

1989 (2)

N. J. Doran, D. S. Forrester, B. K. Nayar, Electron. Lett. 25, 267 (1989).
[CrossRef]

K. J. Blow, N. J. Doran, B. K. Nayar, Opt. Lett. 14, 754 (1989).
[CrossRef] [PubMed]

1988 (2)

1983 (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Nonlinear phase imposed on the probe signal when the loop length is shorter than the walk-off length [curve (a)] and when the loop length is longer than the walk-off length [curve (b)].

Fig. 2
Fig. 2

Experimental configuration.

Fig. 3
Fig. 3

Reflected 1.53-μm signal with a loop length of 500 m for average pump input powers of (a) 20 mW, (b) 35 mW, and (c) 60 mW and (d) for a loop length of 100 m at an average pump input power of 55 mW.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

i ( A z + β A A t ) = | A | 2 A + 2 | B | 2 A ,
i ( B z + β B B t ) = ω B ω A ( | B | 2 B + 2 | A | 2 B ) ,
i ( A z + Δ β A t ) = 0 ,
i B z = 2 ω B ω A | A | 2 B ,
Δ β = β A β B
A ( z , t ) = P A 1 / 2 ( t Δ β z ) .
B ( z , t ) = B ( 0 , t ) exp i ϕ ,
ϕ = 2 ω B ω A 0 L P A ( t Δ β z ) d z ,
B ref = B in 2 [ 1 + cos ( ϕ ) ] .
A ( t ) = U sech ( t ) ,
ϕ ( t ) = U 2 [ tanh ( t ) tanh ( t Δ β L ) Δ β ] .

Metrics