Abstract

The effect of intrapulse stimulated Raman scattering (ISRS) on the quality of soliton-effect pulse compression is analyzed by solving the generalized nonlinear Schrödinger equation numerically. The results show that ISRS can improve the performance of soliton-effect pulse compressors both qualitatively and quantitatively. The compressed pulse is shorter with a higher peak power when ISRS is taken into account. Furthermore it is pedestal free as it separates from the background. The separation is due to the soliton self-frequency shift initiated by the process of ISRS. It can also be understood in terms of the soliton decay. The optimum fiber length is found to be longer than that expected in the absence of ISRS.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a recent review see G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989), Chap. 6.
  2. A. S. L. Gomes, A. S. Gouveia-Neto, J. R. Taylor, Opt. Quantum Electron. 20, 95 (1988).
    [CrossRef]
  3. E. A. Golovchenko, E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, Opt. Quantum Electron. 20, 343 (1988).
    [CrossRef]
  4. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
    [CrossRef] [PubMed]
  5. E. M. Dianov, A. Ya Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, A. A. Fomichev, JETP Lett. 41, 294 (1985).
  6. F. M. Mitschke, L. F. Mollenauer, Opt. Lett. 11, 659 (1986).
    [CrossRef] [PubMed]
  7. J. P. Gordon, Opt. Lett. 11, 662 (1986).
    [CrossRef] [PubMed]
  8. E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, V. N. Serkin, JETP Lett. 42, 87 (1985).
  9. K. Tai, A. Hasegawa, N. Bekki, Opt. Lett. 13, 392 (1988).
    [CrossRef] [PubMed]
  10. A. S. Gouveia-Neto, A. S. L. Gomes, J. R. Taylor, Opt. Lett. 12, 395 (1987).
    [CrossRef] [PubMed]
  11. Y. Kodama, A. Hasegawa, IEEE J. Quantum Electron. QE-23, 510 (1987).
    [CrossRef]
  12. Sections 2.3 and 5.5 of Ref. 1.
  13. The split-step Fourier method is also known as the beam-propagation method. See Sec. 2.4 of Ref. 1 and references therein for details of the numerical method.

1988 (3)

A. S. L. Gomes, A. S. Gouveia-Neto, J. R. Taylor, Opt. Quantum Electron. 20, 95 (1988).
[CrossRef]

E. A. Golovchenko, E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, Opt. Quantum Electron. 20, 343 (1988).
[CrossRef]

K. Tai, A. Hasegawa, N. Bekki, Opt. Lett. 13, 392 (1988).
[CrossRef] [PubMed]

1987 (2)

1986 (2)

1985 (2)

E. M. Dianov, A. Ya Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, A. A. Fomichev, JETP Lett. 41, 294 (1985).

E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, V. N. Serkin, JETP Lett. 42, 87 (1985).

1983 (1)

Agrawal, G. P.

For a recent review see G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989), Chap. 6.

Bekki, N.

Dianov, E. M.

E. A. Golovchenko, E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, Opt. Quantum Electron. 20, 343 (1988).
[CrossRef]

E. M. Dianov, A. Ya Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, A. A. Fomichev, JETP Lett. 41, 294 (1985).

E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, V. N. Serkin, JETP Lett. 42, 87 (1985).

Fomichev, A. A.

E. M. Dianov, A. Ya Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, A. A. Fomichev, JETP Lett. 41, 294 (1985).

Golovchenko, E. A.

E. A. Golovchenko, E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, Opt. Quantum Electron. 20, 343 (1988).
[CrossRef]

E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, V. N. Serkin, JETP Lett. 42, 87 (1985).

Gomes, A. S. L.

A. S. L. Gomes, A. S. Gouveia-Neto, J. R. Taylor, Opt. Quantum Electron. 20, 95 (1988).
[CrossRef]

A. S. Gouveia-Neto, A. S. L. Gomes, J. R. Taylor, Opt. Lett. 12, 395 (1987).
[CrossRef] [PubMed]

Gordon, J. P.

Gouveia-Neto, A. S.

A. S. L. Gomes, A. S. Gouveia-Neto, J. R. Taylor, Opt. Quantum Electron. 20, 95 (1988).
[CrossRef]

A. S. Gouveia-Neto, A. S. L. Gomes, J. R. Taylor, Opt. Lett. 12, 395 (1987).
[CrossRef] [PubMed]

Hasegawa, A.

K. Tai, A. Hasegawa, N. Bekki, Opt. Lett. 13, 392 (1988).
[CrossRef] [PubMed]

Y. Kodama, A. Hasegawa, IEEE J. Quantum Electron. QE-23, 510 (1987).
[CrossRef]

Kodama, Y.

Y. Kodama, A. Hasegawa, IEEE J. Quantum Electron. QE-23, 510 (1987).
[CrossRef]

Mamyshev, P. V.

E. A. Golovchenko, E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, Opt. Quantum Electron. 20, 343 (1988).
[CrossRef]

E. M. Dianov, A. Ya Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, A. A. Fomichev, JETP Lett. 41, 294 (1985).

Mitschke, F. M.

Mollenauer, L. F.

Prokhorov, A. M.

E. A. Golovchenko, E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, Opt. Quantum Electron. 20, 343 (1988).
[CrossRef]

E. M. Dianov, A. Ya Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, A. A. Fomichev, JETP Lett. 41, 294 (1985).

E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, V. N. Serkin, JETP Lett. 42, 87 (1985).

Serkin, V. N.

E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, V. N. Serkin, JETP Lett. 42, 87 (1985).

E. M. Dianov, A. Ya Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, A. A. Fomichev, JETP Lett. 41, 294 (1985).

Stelmakh, M. F.

E. M. Dianov, A. Ya Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, A. A. Fomichev, JETP Lett. 41, 294 (1985).

Stolen, R. H.

Tai, K.

Taylor, J. R.

A. S. L. Gomes, A. S. Gouveia-Neto, J. R. Taylor, Opt. Quantum Electron. 20, 95 (1988).
[CrossRef]

A. S. Gouveia-Neto, A. S. L. Gomes, J. R. Taylor, Opt. Lett. 12, 395 (1987).
[CrossRef] [PubMed]

Tomlinson, W. J.

Ya Karasik, A.

E. M. Dianov, A. Ya Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, A. A. Fomichev, JETP Lett. 41, 294 (1985).

IEEE J. Quantum Electron. (1)

Y. Kodama, A. Hasegawa, IEEE J. Quantum Electron. QE-23, 510 (1987).
[CrossRef]

JETP Lett. (2)

E. M. Dianov, A. Ya Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, A. A. Fomichev, JETP Lett. 41, 294 (1985).

E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, V. N. Serkin, JETP Lett. 42, 87 (1985).

Opt. Lett. (5)

Opt. Quantum Electron. (2)

A. S. L. Gomes, A. S. Gouveia-Neto, J. R. Taylor, Opt. Quantum Electron. 20, 95 (1988).
[CrossRef]

E. A. Golovchenko, E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, Opt. Quantum Electron. 20, 343 (1988).
[CrossRef]

Other (3)

Sections 2.3 and 5.5 of Ref. 1.

The split-step Fourier method is also known as the beam-propagation method. See Sec. 2.4 of Ref. 1 and references therein for details of the numerical method.

For a recent review see G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, Mass., 1989), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Evolution of the tenth-order soliton over the range ξ = 0–0.1 showing pulse narrowing and splitting associated with higher-order solitons. ISRS is neglected by setting τR = 0.

Fig. 2
Fig. 2

Same as in Fig. 1 except that ISRS is included by choosing τR = 0.01. This value of τR is appropriate for a 1-psec input pulse. The propagation distance is ξ = z/LD, where LD is estimated to be 18 m for a 1-psec pulse propagating in a fiber with β2 = −20 psec2/km.

Fig. 3
Fig. 3

Pulse spectrum at ξ = 0.08 for τR = 0.01 showing the development of a red-shifted spectral peak as a result of ISRS.

Fig. 4
Fig. 4

Pulse shapes at ξ = 0.08, 0.09, and 0.1 showing separation of the compressed spike from the rest of the pulse.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

i U ξ + 1 2 2 U τ 2 i δ 3 U τ 3 = N 2 [ | U | 2 U + i s τ ( | U | 2 U ) τ R U τ ( | U | 2 ) ] ,
ξ = | β 2 | z T 0 2 , τ = t z / υ g T 0 , N 2 = n 2 ω 0 P 0 T 0 2 c A eff | β 2 | ,
δ = β 3 6 | β 2 | T 0 , s = 2 ω 0 T 0 , τ R = T R T 0 .
U ( 0 , τ ) = N sech ( τ ) ,

Metrics