Abstract

A small Nd:YAG laser with plano-concave resonator end pumped by a dye laser is observed to possess single Laguerre–Gauss transverse modes as the lowest-loss modes. This anomalous behavior occurs when the transverse dimension of the gain spot is much smaller than the fundamental TEM00-mode spot size of the resonator; the Laguerre–Gauss transverse-mode order varies with resonator length.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, e.g., A. E. Siegman, Lasers (Oxford U. Press, Oxford, UK, 1986), p. 744 and references therein;H. Kogelnik, T. Li, Appl. Opt. 5, 1550 (1966), and references therein.
    [CrossRef] [PubMed]
  2. A. E. Siegman, Lasers (Oxford U. Press, Oxford, UK, 1986), p. 834;A. Yariv, P. Yeh, Opt. Commun. 13, 370 (1975);L. W. Casperson, S. D. Lunnam, Appl. Opt. 14, 1193 (1975);U. Ganiel, A. Hardy, Y. Silberberg, Opt. Commun. 14, 290 (1975).
    [CrossRef] [PubMed]
  3. See T.Y. Fan, R. L. Byer, IEEE J. Quantum Electron. 24, 895 (1988), and references therein.
    [CrossRef]
  4. A. G. Fox, T. Li, IEEE J. Quantum Electron. QE-4, 460 (1968).
    [CrossRef]
  5. J. Durnin, J. Opt. Soc. Am. A 4, (1987);J. Durnin, J. J. Miceli, Phys. Rev. Lett. 58, 1499 (1987).
    [CrossRef] [PubMed]
  6. K. Uehara, in Digest of International Quantum Electronics Conference (Japan Society for Applied Physics, Tokyo, 1988) paper MP42.

1988 (1)

See T.Y. Fan, R. L. Byer, IEEE J. Quantum Electron. 24, 895 (1988), and references therein.
[CrossRef]

1987 (1)

J. Durnin, J. Opt. Soc. Am. A 4, (1987);J. Durnin, J. J. Miceli, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

1968 (1)

A. G. Fox, T. Li, IEEE J. Quantum Electron. QE-4, 460 (1968).
[CrossRef]

Byer, R. L.

See T.Y. Fan, R. L. Byer, IEEE J. Quantum Electron. 24, 895 (1988), and references therein.
[CrossRef]

Durnin, J.

J. Durnin, J. Opt. Soc. Am. A 4, (1987);J. Durnin, J. J. Miceli, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

Fan, T.Y.

See T.Y. Fan, R. L. Byer, IEEE J. Quantum Electron. 24, 895 (1988), and references therein.
[CrossRef]

Fox, A. G.

A. G. Fox, T. Li, IEEE J. Quantum Electron. QE-4, 460 (1968).
[CrossRef]

Li, T.

A. G. Fox, T. Li, IEEE J. Quantum Electron. QE-4, 460 (1968).
[CrossRef]

Siegman, A. E.

See, e.g., A. E. Siegman, Lasers (Oxford U. Press, Oxford, UK, 1986), p. 744 and references therein;H. Kogelnik, T. Li, Appl. Opt. 5, 1550 (1966), and references therein.
[CrossRef] [PubMed]

A. E. Siegman, Lasers (Oxford U. Press, Oxford, UK, 1986), p. 834;A. Yariv, P. Yeh, Opt. Commun. 13, 370 (1975);L. W. Casperson, S. D. Lunnam, Appl. Opt. 14, 1193 (1975);U. Ganiel, A. Hardy, Y. Silberberg, Opt. Commun. 14, 290 (1975).
[CrossRef] [PubMed]

Uehara, K.

K. Uehara, in Digest of International Quantum Electronics Conference (Japan Society for Applied Physics, Tokyo, 1988) paper MP42.

IEEE J. Quantum Electron. (2)

See T.Y. Fan, R. L. Byer, IEEE J. Quantum Electron. 24, 895 (1988), and references therein.
[CrossRef]

A. G. Fox, T. Li, IEEE J. Quantum Electron. QE-4, 460 (1968).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Durnin, J. Opt. Soc. Am. A 4, (1987);J. Durnin, J. J. Miceli, Phys. Rev. Lett. 58, 1499 (1987).
[CrossRef] [PubMed]

Other (3)

K. Uehara, in Digest of International Quantum Electronics Conference (Japan Society for Applied Physics, Tokyo, 1988) paper MP42.

See, e.g., A. E. Siegman, Lasers (Oxford U. Press, Oxford, UK, 1986), p. 744 and references therein;H. Kogelnik, T. Li, Appl. Opt. 5, 1550 (1966), and references therein.
[CrossRef] [PubMed]

A. E. Siegman, Lasers (Oxford U. Press, Oxford, UK, 1986), p. 834;A. Yariv, P. Yeh, Opt. Commun. 13, 370 (1975);L. W. Casperson, S. D. Lunnam, Appl. Opt. 14, 1193 (1975);U. Ganiel, A. Hardy, Y. Silberberg, Opt. Commun. 14, 290 (1975).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Configuration of the small Nd:YAG system showing the end-pumping geometry and the transverse gain profile inside the Nd:YAG rod. R, high-reflectivity mirror; f, 13-cm focal-length lens. (b) The transverse-mode intensity profile observed for L ≃ 30 mm at a distance 12.5 cm from the output coupler. The resolution of the charge-coupled-device reticon array at 1.064 μm is degraded by cross talk, which results in a nonzero background.

Fig. 2
Fig. 2

Comparison of a spatially varying gain profile and its Gaussian approximation with the TEM00 and n = 4 L–G eigensolutions calculated for our complex stable resonator using the ABCD matrix analysis.

Fig. 3
Fig. 3

Comparison of (a) the observed output at 12.5 cm from the output coupler (scale, 3.5 mm/division) and (b) the calculated form for a L–G mode with n = 9.

Tables (1)

Tables Icon

Table 1 Mode Orders Observed at Different Physical Cavity Lengths

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

γ n m E n m ( r ) = K ( r , r ) E n m ( r ) d r ,
γ n = ( A + B q ) ( 2 n + 1 ) .

Metrics