Abstract

Measurements of time delays for explosion of pulsed CO2 laser-heated droplets are presented. A simple model based on classical nucleation theory in superheated liquids, which neglects heat and mass transport, is used to interpret the data. The model shows good agreement with the experimental observations.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Armstrong, in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), Chap. IV and references therein.
  2. B.-S. Park, R. L. Armstrong, Appl. Opt. 28, 3671 (1989).
    [CrossRef] [PubMed]
  3. J. D. Pendleton, Appl. Opt. 24, 1631 (1985).
    [CrossRef] [PubMed]
  4. A. P. Prishivalko, S. T. Leiko, J. Appl. Spectrosc. 33, 1137 (1980);A. P. Prishivalko, Sov. Phys. J. 26, 142 (1983).
    [CrossRef]
  5. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957);C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  6. M. Blander, J. L. Katz, AIChE J. 21, 833 (1975);M. Blander, Adv. Colloid Interface Sci. 10, 1 (1979).
    [CrossRef]
  7. J. G. Eberhart, H. C. Schnyders, J. Phys. Chem. 77, 2730 (1973).
    [CrossRef]
  8. R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, G. Fernandez, “Micron-sized droplets irradiated with a pulsed CO2 laser: measurement of explosion and breakdown thresholds,” Appl. Opt. (to be published).
  9. V. P. Skripov, Therm. Eng. (USSR) 21, 47 (1974).
  10. F. D. Feiock, L. K. Goodwin, J. Appl. Phys. 43, 5061 (1972).
    [CrossRef]
  11. E. A. Guggenheim, J. Chem. Phys. 13, 253 (1945).
    [CrossRef]
  12. R. C. Tolman, J. Chem. Phys. 17, 118 (1949).
    [CrossRef]
  13. N. B. Vargaftik, B. N. Volkov, L. D. Voljak, J. Phys. Chem. Ref. Data 12, 817 (1983).
    [CrossRef]
  14. J. R. Woolf, in Water and Steam, J. Straub, K. Scheffler, eds. (Pergamon, New York, 1980), p. 150.
  15. S. F. Clearly, in Laser Applications in Medicine and Biology, M. L. Wolbarsht, ed. (Plenum, New York, 1977), p. 175.
    [CrossRef]
  16. N. V. Bukzdorf, V. A. Pogodaev, L. K. Chistyakova, Sov. J. Quantum Electron. 5, 579 (1975).
    [CrossRef]
  17. A. P. Prishivalko, J. Appl. Spectrosc. 33, 892 (1980).
    [CrossRef]
  18. J.-Z. Zhang, R. K. Chang, Opt. Lett. 13, 916 (1988);H. M. Lai, W. M. Suen, K. Young, Phys. Rev. A 25, 1755 (1982);J. P. Gordon, Phys. Rev. A 8, 14 (1973).
    [CrossRef] [PubMed]
  19. S. M. Chitanvis, Theoretical Division, Los Alamos National Laboratory, Los Alamos, N. M. 87545, (personal communication).

1989 (1)

1988 (1)

1985 (1)

1983 (1)

N. B. Vargaftik, B. N. Volkov, L. D. Voljak, J. Phys. Chem. Ref. Data 12, 817 (1983).
[CrossRef]

1980 (2)

A. P. Prishivalko, S. T. Leiko, J. Appl. Spectrosc. 33, 1137 (1980);A. P. Prishivalko, Sov. Phys. J. 26, 142 (1983).
[CrossRef]

A. P. Prishivalko, J. Appl. Spectrosc. 33, 892 (1980).
[CrossRef]

1975 (2)

M. Blander, J. L. Katz, AIChE J. 21, 833 (1975);M. Blander, Adv. Colloid Interface Sci. 10, 1 (1979).
[CrossRef]

N. V. Bukzdorf, V. A. Pogodaev, L. K. Chistyakova, Sov. J. Quantum Electron. 5, 579 (1975).
[CrossRef]

1974 (1)

V. P. Skripov, Therm. Eng. (USSR) 21, 47 (1974).

1973 (1)

J. G. Eberhart, H. C. Schnyders, J. Phys. Chem. 77, 2730 (1973).
[CrossRef]

1972 (1)

F. D. Feiock, L. K. Goodwin, J. Appl. Phys. 43, 5061 (1972).
[CrossRef]

1949 (1)

R. C. Tolman, J. Chem. Phys. 17, 118 (1949).
[CrossRef]

1945 (1)

E. A. Guggenheim, J. Chem. Phys. 13, 253 (1945).
[CrossRef]

Armstrong, R. L.

B.-S. Park, R. L. Armstrong, Appl. Opt. 28, 3671 (1989).
[CrossRef] [PubMed]

R. L. Armstrong, in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), Chap. IV and references therein.

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, G. Fernandez, “Micron-sized droplets irradiated with a pulsed CO2 laser: measurement of explosion and breakdown thresholds,” Appl. Opt. (to be published).

Biswas, A.

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, G. Fernandez, “Micron-sized droplets irradiated with a pulsed CO2 laser: measurement of explosion and breakdown thresholds,” Appl. Opt. (to be published).

Blander, M.

M. Blander, J. L. Katz, AIChE J. 21, 833 (1975);M. Blander, Adv. Colloid Interface Sci. 10, 1 (1979).
[CrossRef]

Bukzdorf, N. V.

N. V. Bukzdorf, V. A. Pogodaev, L. K. Chistyakova, Sov. J. Quantum Electron. 5, 579 (1975).
[CrossRef]

Chang, R. K.

Chistyakova, L. K.

N. V. Bukzdorf, V. A. Pogodaev, L. K. Chistyakova, Sov. J. Quantum Electron. 5, 579 (1975).
[CrossRef]

Chitanvis, S. M.

S. M. Chitanvis, Theoretical Division, Los Alamos National Laboratory, Los Alamos, N. M. 87545, (personal communication).

Clearly, S. F.

S. F. Clearly, in Laser Applications in Medicine and Biology, M. L. Wolbarsht, ed. (Plenum, New York, 1977), p. 175.
[CrossRef]

Eberhart, J. G.

J. G. Eberhart, H. C. Schnyders, J. Phys. Chem. 77, 2730 (1973).
[CrossRef]

Feiock, F. D.

F. D. Feiock, L. K. Goodwin, J. Appl. Phys. 43, 5061 (1972).
[CrossRef]

Fernandez, G.

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, G. Fernandez, “Micron-sized droplets irradiated with a pulsed CO2 laser: measurement of explosion and breakdown thresholds,” Appl. Opt. (to be published).

Goodwin, L. K.

F. D. Feiock, L. K. Goodwin, J. Appl. Phys. 43, 5061 (1972).
[CrossRef]

Guggenheim, E. A.

E. A. Guggenheim, J. Chem. Phys. 13, 253 (1945).
[CrossRef]

Jennings, S. G.

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, G. Fernandez, “Micron-sized droplets irradiated with a pulsed CO2 laser: measurement of explosion and breakdown thresholds,” Appl. Opt. (to be published).

Katz, J. L.

M. Blander, J. L. Katz, AIChE J. 21, 833 (1975);M. Blander, Adv. Colloid Interface Sci. 10, 1 (1979).
[CrossRef]

Leiko, S. T.

A. P. Prishivalko, S. T. Leiko, J. Appl. Spectrosc. 33, 1137 (1980);A. P. Prishivalko, Sov. Phys. J. 26, 142 (1983).
[CrossRef]

Park, B.-S.

Pendleton, J. D.

J. D. Pendleton, Appl. Opt. 24, 1631 (1985).
[CrossRef] [PubMed]

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, G. Fernandez, “Micron-sized droplets irradiated with a pulsed CO2 laser: measurement of explosion and breakdown thresholds,” Appl. Opt. (to be published).

Pinnick, R. G.

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, G. Fernandez, “Micron-sized droplets irradiated with a pulsed CO2 laser: measurement of explosion and breakdown thresholds,” Appl. Opt. (to be published).

Pogodaev, V. A.

N. V. Bukzdorf, V. A. Pogodaev, L. K. Chistyakova, Sov. J. Quantum Electron. 5, 579 (1975).
[CrossRef]

Prishivalko, A. P.

A. P. Prishivalko, J. Appl. Spectrosc. 33, 892 (1980).
[CrossRef]

A. P. Prishivalko, S. T. Leiko, J. Appl. Spectrosc. 33, 1137 (1980);A. P. Prishivalko, Sov. Phys. J. 26, 142 (1983).
[CrossRef]

Schnyders, H. C.

J. G. Eberhart, H. C. Schnyders, J. Phys. Chem. 77, 2730 (1973).
[CrossRef]

Skripov, V. P.

V. P. Skripov, Therm. Eng. (USSR) 21, 47 (1974).

Tolman, R. C.

R. C. Tolman, J. Chem. Phys. 17, 118 (1949).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957);C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Vargaftik, N. B.

N. B. Vargaftik, B. N. Volkov, L. D. Voljak, J. Phys. Chem. Ref. Data 12, 817 (1983).
[CrossRef]

Voljak, L. D.

N. B. Vargaftik, B. N. Volkov, L. D. Voljak, J. Phys. Chem. Ref. Data 12, 817 (1983).
[CrossRef]

Volkov, B. N.

N. B. Vargaftik, B. N. Volkov, L. D. Voljak, J. Phys. Chem. Ref. Data 12, 817 (1983).
[CrossRef]

Woolf, J. R.

J. R. Woolf, in Water and Steam, J. Straub, K. Scheffler, eds. (Pergamon, New York, 1980), p. 150.

Zhang, J.-Z.

AIChE J. (1)

M. Blander, J. L. Katz, AIChE J. 21, 833 (1975);M. Blander, Adv. Colloid Interface Sci. 10, 1 (1979).
[CrossRef]

Appl. Opt. (2)

J. Appl. Phys. (1)

F. D. Feiock, L. K. Goodwin, J. Appl. Phys. 43, 5061 (1972).
[CrossRef]

J. Appl. Spectrosc. (2)

A. P. Prishivalko, J. Appl. Spectrosc. 33, 892 (1980).
[CrossRef]

A. P. Prishivalko, S. T. Leiko, J. Appl. Spectrosc. 33, 1137 (1980);A. P. Prishivalko, Sov. Phys. J. 26, 142 (1983).
[CrossRef]

J. Chem. Phys. (2)

E. A. Guggenheim, J. Chem. Phys. 13, 253 (1945).
[CrossRef]

R. C. Tolman, J. Chem. Phys. 17, 118 (1949).
[CrossRef]

J. Phys. Chem. (1)

J. G. Eberhart, H. C. Schnyders, J. Phys. Chem. 77, 2730 (1973).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

N. B. Vargaftik, B. N. Volkov, L. D. Voljak, J. Phys. Chem. Ref. Data 12, 817 (1983).
[CrossRef]

Opt. Lett. (1)

Sov. J. Quantum Electron. (1)

N. V. Bukzdorf, V. A. Pogodaev, L. K. Chistyakova, Sov. J. Quantum Electron. 5, 579 (1975).
[CrossRef]

Therm. Eng. (USSR) (1)

V. P. Skripov, Therm. Eng. (USSR) 21, 47 (1974).

Other (6)

R. L. Armstrong, in Optical Effects Associated with Small Particles, P. W. Barber, R. K. Chang, eds. (World Scientific, Singapore, 1988), Chap. IV and references therein.

R. G. Pinnick, A. Biswas, R. L. Armstrong, S. G. Jennings, J. D. Pendleton, G. Fernandez, “Micron-sized droplets irradiated with a pulsed CO2 laser: measurement of explosion and breakdown thresholds,” Appl. Opt. (to be published).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957);C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

S. M. Chitanvis, Theoretical Division, Los Alamos National Laboratory, Los Alamos, N. M. 87545, (personal communication).

J. R. Woolf, in Water and Steam, J. Straub, K. Scheffler, eds. (Pergamon, New York, 1980), p. 150.

S. F. Clearly, in Laser Applications in Medicine and Biology, M. L. Wolbarsht, ed. (Plenum, New York, 1977), p. 175.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Trace of light signals as detected by a pyroelectric (20-psec rise time) detector for the CO2 laser and a fast silicon photodiode (1-nsec rise time) for the Nd:YAG laser fed to a transient digitizer. Also shown is the time τ that yields a measure of delays for initiation of the drop disruption.

Fig. 2
Fig. 2

Photographs of 35-μm-radius water and ethanol droplets showing the criterion used to define initiation of droplet disruption. Note that water explosion starts on the illuminated side, whereas ethanol explosion starts on the shadow side.8

Fig. 3
Fig. 3

Time delay for initiation of explosion τ versus R = (FFth)/Fth for several liquid droplets. The least-square fit (solid) lines for water and ethanol droplets are shown.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

τ = N c J V h
J = J 0 exp ( W k T ) ,
log τ = a + b R ,
a = log N c J 0 V h + W k T sh ln 10 ,
b = ( W k T sh ) ( Δ T T sh ) ( ρ υ ρ l ) ( c p l c p υ ) ( 1 ln 10 )
T sh = T 0 + α ρ c p F th ,
T = T sh + Δ T ( ρ υ ρ l ) ( c p l c p υ ) R .
W k T W k T sh [ 1 ( Δ T T sh ) ( ρ υ ρ l ) ( c p l c p υ ) R ] ,

Metrics