Abstract

An experimental scheme is proposed by which the quantum states of two light beams of different frequencies can be interchanged. With this scheme it is possible to generate frequency-tunable squeezed light for spectroscopic applications.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For references see the special issue on squeezed states of the electromagnetic field, J. Opt. Soc. Am. B 4, 1450–1741 (1987); R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke, M. J. Potasek, Phys. Rev. Lett. 59, 2566 (1987); S. F. Pereira, M. Xiao, H. J. Kimble, J. L. Hall, Phys. Rev. A 38, 4931 (1988);P. Kumar, O. Aytür, J. Huang, Phys. Rev. Lett. 64, 1015 (1990).
    [CrossRef] [PubMed]
  2. M. Xiao, L.-A. Wu, H. J. Kimble, Phys. Rev. Lett. 59,278 (1987); P. Grangier, R. E. Slusher, B. Yurke, A. LaPorta, Phys. Rev. Lett. 59, 2153 (1987).
    [CrossRef] [PubMed]
  3. M. Xiao, L.-A. Wu, H. J. Kimble, Opt. Lett. 13, 476 (1988).
    [CrossRef] [PubMed]
  4. B. Yurke, E. A. Whittaker, Opt. Lett. 12, 236 (1987).
    [CrossRef] [PubMed]
  5. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), Chap. 6.
  6. H. P. Yuen, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Ill. (personal communication).
  7. C. M. Caves, B. L. Schumaker, Phys. Rev. A 31, 3068 (1985).
    [CrossRef] [PubMed]
  8. J.-C. Baumert, J. Hoffnagle, P. Gunter, Proc. Soc. Photo-Opt. Instrum. Eng. 492, 374 (1984); J.-C. Baumert, P. Günter, Appl. Phys. Lett. 50, 554 (1987).
    [CrossRef]
  9. O. Aytür, P. Kumar, Opt. Lett. 15, 390 (1990).
    [CrossRef] [PubMed]
  10. P. Kumar, O. Aytür, J. Huang, Phys. Rev. Lett. 64, 1015 (1990).
    [CrossRef] [PubMed]
  11. O. Aytür, P. Kumar, Phys. Rev. Lett 65, 1551 (1990).
    [CrossRef] [PubMed]

1990 (3)

P. Kumar, O. Aytür, J. Huang, Phys. Rev. Lett. 64, 1015 (1990).
[CrossRef] [PubMed]

O. Aytür, P. Kumar, Phys. Rev. Lett 65, 1551 (1990).
[CrossRef] [PubMed]

O. Aytür, P. Kumar, Opt. Lett. 15, 390 (1990).
[CrossRef] [PubMed]

1988 (1)

1987 (3)

B. Yurke, E. A. Whittaker, Opt. Lett. 12, 236 (1987).
[CrossRef] [PubMed]

For references see the special issue on squeezed states of the electromagnetic field, J. Opt. Soc. Am. B 4, 1450–1741 (1987); R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke, M. J. Potasek, Phys. Rev. Lett. 59, 2566 (1987); S. F. Pereira, M. Xiao, H. J. Kimble, J. L. Hall, Phys. Rev. A 38, 4931 (1988);P. Kumar, O. Aytür, J. Huang, Phys. Rev. Lett. 64, 1015 (1990).
[CrossRef] [PubMed]

M. Xiao, L.-A. Wu, H. J. Kimble, Phys. Rev. Lett. 59,278 (1987); P. Grangier, R. E. Slusher, B. Yurke, A. LaPorta, Phys. Rev. Lett. 59, 2153 (1987).
[CrossRef] [PubMed]

1985 (1)

C. M. Caves, B. L. Schumaker, Phys. Rev. A 31, 3068 (1985).
[CrossRef] [PubMed]

1984 (1)

J.-C. Baumert, J. Hoffnagle, P. Gunter, Proc. Soc. Photo-Opt. Instrum. Eng. 492, 374 (1984); J.-C. Baumert, P. Günter, Appl. Phys. Lett. 50, 554 (1987).
[CrossRef]

Aytür, O.

O. Aytür, P. Kumar, Opt. Lett. 15, 390 (1990).
[CrossRef] [PubMed]

P. Kumar, O. Aytür, J. Huang, Phys. Rev. Lett. 64, 1015 (1990).
[CrossRef] [PubMed]

O. Aytür, P. Kumar, Phys. Rev. Lett 65, 1551 (1990).
[CrossRef] [PubMed]

Baumert, J.-C.

J.-C. Baumert, J. Hoffnagle, P. Gunter, Proc. Soc. Photo-Opt. Instrum. Eng. 492, 374 (1984); J.-C. Baumert, P. Günter, Appl. Phys. Lett. 50, 554 (1987).
[CrossRef]

Caves, C. M.

C. M. Caves, B. L. Schumaker, Phys. Rev. A 31, 3068 (1985).
[CrossRef] [PubMed]

Gunter, P.

J.-C. Baumert, J. Hoffnagle, P. Gunter, Proc. Soc. Photo-Opt. Instrum. Eng. 492, 374 (1984); J.-C. Baumert, P. Günter, Appl. Phys. Lett. 50, 554 (1987).
[CrossRef]

Hoffnagle, J.

J.-C. Baumert, J. Hoffnagle, P. Gunter, Proc. Soc. Photo-Opt. Instrum. Eng. 492, 374 (1984); J.-C. Baumert, P. Günter, Appl. Phys. Lett. 50, 554 (1987).
[CrossRef]

Huang, J.

P. Kumar, O. Aytür, J. Huang, Phys. Rev. Lett. 64, 1015 (1990).
[CrossRef] [PubMed]

Kimble, H. J.

M. Xiao, L.-A. Wu, H. J. Kimble, Opt. Lett. 13, 476 (1988).
[CrossRef] [PubMed]

M. Xiao, L.-A. Wu, H. J. Kimble, Phys. Rev. Lett. 59,278 (1987); P. Grangier, R. E. Slusher, B. Yurke, A. LaPorta, Phys. Rev. Lett. 59, 2153 (1987).
[CrossRef] [PubMed]

Kumar, P.

O. Aytür, P. Kumar, Opt. Lett. 15, 390 (1990).
[CrossRef] [PubMed]

P. Kumar, O. Aytür, J. Huang, Phys. Rev. Lett. 64, 1015 (1990).
[CrossRef] [PubMed]

O. Aytür, P. Kumar, Phys. Rev. Lett 65, 1551 (1990).
[CrossRef] [PubMed]

Schumaker, B. L.

C. M. Caves, B. L. Schumaker, Phys. Rev. A 31, 3068 (1985).
[CrossRef] [PubMed]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), Chap. 6.

Whittaker, E. A.

Wu, L.-A.

M. Xiao, L.-A. Wu, H. J. Kimble, Opt. Lett. 13, 476 (1988).
[CrossRef] [PubMed]

M. Xiao, L.-A. Wu, H. J. Kimble, Phys. Rev. Lett. 59,278 (1987); P. Grangier, R. E. Slusher, B. Yurke, A. LaPorta, Phys. Rev. Lett. 59, 2153 (1987).
[CrossRef] [PubMed]

Xiao, M.

M. Xiao, L.-A. Wu, H. J. Kimble, Opt. Lett. 13, 476 (1988).
[CrossRef] [PubMed]

M. Xiao, L.-A. Wu, H. J. Kimble, Phys. Rev. Lett. 59,278 (1987); P. Grangier, R. E. Slusher, B. Yurke, A. LaPorta, Phys. Rev. Lett. 59, 2153 (1987).
[CrossRef] [PubMed]

Yuen, H. P.

H. P. Yuen, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Ill. (personal communication).

Yurke, B.

J. Opt. Soc. Am. B (1)

For references see the special issue on squeezed states of the electromagnetic field, J. Opt. Soc. Am. B 4, 1450–1741 (1987); R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke, M. J. Potasek, Phys. Rev. Lett. 59, 2566 (1987); S. F. Pereira, M. Xiao, H. J. Kimble, J. L. Hall, Phys. Rev. A 38, 4931 (1988);P. Kumar, O. Aytür, J. Huang, Phys. Rev. Lett. 64, 1015 (1990).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. A (1)

C. M. Caves, B. L. Schumaker, Phys. Rev. A 31, 3068 (1985).
[CrossRef] [PubMed]

Phys. Rev. Lett (1)

O. Aytür, P. Kumar, Phys. Rev. Lett 65, 1551 (1990).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

P. Kumar, O. Aytür, J. Huang, Phys. Rev. Lett. 64, 1015 (1990).
[CrossRef] [PubMed]

M. Xiao, L.-A. Wu, H. J. Kimble, Phys. Rev. Lett. 59,278 (1987); P. Grangier, R. E. Slusher, B. Yurke, A. LaPorta, Phys. Rev. Lett. 59, 2153 (1987).
[CrossRef] [PubMed]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J.-C. Baumert, J. Hoffnagle, P. Gunter, Proc. Soc. Photo-Opt. Instrum. Eng. 492, 374 (1984); J.-C. Baumert, P. Günter, Appl. Phys. Lett. 50, 554 (1987).
[CrossRef]

Other (2)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984), Chap. 6.

H. P. Yuen, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Ill. (personal communication).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Schematic of an experimental setup to generate tunable squeezed light for application in precision spectroscopy. Broadband squeezing around a fixed optical frequency generated by the IR squeezer can be transformed into squeezing around a new center frequency, which can be varied by tuning the laser that is pumping the quantum frequency converter. PZT, piezoelectric transducer; HWP, half-wave plate; LO, local oscillator; BSP, beam-splitting polarizer; P, polarizer; BPF, (electronic) bandpass filter; I, idler beam; S, signal beam; BS, beam splitter; G, electronic amplifier.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

H ˆ I = χ ( a ˆ 1 a ˆ 2 a ˆ 3 H . c . ) ,
H ˆ I = χ ( a ˆ 1 a ˆ 3 H . c . ) ,
d a ˆ 1 d t = χ a ˆ 3 , d a ˆ 3 dt = χ a ˆ 1 ,
a ˆ 1 ( t ) = a ˆ 1 ( 0 ) cos χ t a ˆ 3 ( 0 ) sin χ t ,
a ˆ 3 ( t ) = a ˆ 3 ( 0 ) cos χ t + a ˆ 1 ( 0 ) sin χ t .
â 1 ( t = π / 2 χ ) = a ˆ 3 ( 0 ) , a ˆ 3 ( t = π / 2 χ ) = a ˆ 1 ( 0 ) ,
f ˆ 1 t = 0 = 1 ψ | f ˆ 1 [ a ˆ 1 ( 0 ) ] | ψ 1 ,
f ˆ 3 t = 0 = 3 ϕ | f ˆ 3 [ a ˆ 3 ( 0 ) ] | ϕ 3 ,
f ˆ 1 t = π / 2 χ = 3 ϕ | f ˆ 1 [ a ˆ 3 ( 0 ) ] | ϕ 3 ,
f ˆ 3 t = π / 2 χ = 1 ψ | f ˆ 3 [ a ˆ 1 ( 0 ) ] | ψ 1 .
H ˆ I = χ [ ( a ˆ 1 + a ˆ 2 a ˆ 3 + + a ˆ 1 a ˆ 2 a ˆ 3 ) H . c . ] = χ [ ( a ˆ 1 c a ˆ 2 a ˆ 3 c + a ˆ 1 s a ˆ 2 a ˆ 3 s ) H . c . ] ,
H ˆ I = χ ( j = s , c a ˆ 1 j a ˆ 3 j H . c . ) .
a ˆ 1 j ( t ) = a ˆ 1 j ( 0 ) cos χ t a ˆ 3 j ( 0 ) sin χ t ,
a ˆ 3 j ( t ) = a ˆ 3 j ( 0 ) cos χ t + a ˆ 1 j ( 0 ) sin χ t .
I 2 = 2 0 c n 2 ( n 1 n 3 λ 1 λ 3 16 d 2 L 2 ) ,

Metrics