Abstract

We show theoretically that the incorporation of a frequency-dependent loss mechanism in a semiconductor laser can lead, in concert with the amplitude-to-phase coupling, to major reductions of the fundamental intensity and phase noise. A loss dispersion of the wrong sign, on the other hand, leads to an increase of the noise and, at a certain strength, to instability.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Belenov, V. L. Velichanskii, A. S. Zibrov, V. V. Nikitin, V. A. Sautenkov, A. V. Uskov, Sov. J. Quantum Electron. 13, 792 (1983).
    [CrossRef]
  2. K. Vahala, A. Yariv, Appl. Phys. Lett. 45, 501 (1984).
    [CrossRef]
  3. K. Vahala, J. Paslaski, A. Yariv, Appl. Phys. Lett. 46, 1025 (1985).
    [CrossRef]
  4. B. Dahmani, L. Hollberg, R. Drullinger, Opt. Lett. 12, 876 (1987).
    [CrossRef] [PubMed]
  5. A. Yariv, W. Caton, IEEE J. Quantum Electron. QE-10, 509 (1974).
    [CrossRef]
  6. K. Vahala, A. Yariv, IEEE J. Quantum Electron. QE-19, 1096 (1983).
    [CrossRef]
  7. P. H. Laurent, A. Clairon, C. H. Breaut, IEEE J. Quantum Electron. 25, 1131 (1989).
    [CrossRef]

1989 (1)

P. H. Laurent, A. Clairon, C. H. Breaut, IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

1987 (1)

1985 (1)

K. Vahala, J. Paslaski, A. Yariv, Appl. Phys. Lett. 46, 1025 (1985).
[CrossRef]

1984 (1)

K. Vahala, A. Yariv, Appl. Phys. Lett. 45, 501 (1984).
[CrossRef]

1983 (2)

E. M. Belenov, V. L. Velichanskii, A. S. Zibrov, V. V. Nikitin, V. A. Sautenkov, A. V. Uskov, Sov. J. Quantum Electron. 13, 792 (1983).
[CrossRef]

K. Vahala, A. Yariv, IEEE J. Quantum Electron. QE-19, 1096 (1983).
[CrossRef]

1974 (1)

A. Yariv, W. Caton, IEEE J. Quantum Electron. QE-10, 509 (1974).
[CrossRef]

Belenov, E. M.

E. M. Belenov, V. L. Velichanskii, A. S. Zibrov, V. V. Nikitin, V. A. Sautenkov, A. V. Uskov, Sov. J. Quantum Electron. 13, 792 (1983).
[CrossRef]

Breaut, C. H.

P. H. Laurent, A. Clairon, C. H. Breaut, IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

Caton, W.

A. Yariv, W. Caton, IEEE J. Quantum Electron. QE-10, 509 (1974).
[CrossRef]

Clairon, A.

P. H. Laurent, A. Clairon, C. H. Breaut, IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

Dahmani, B.

Drullinger, R.

Hollberg, L.

Laurent, P. H.

P. H. Laurent, A. Clairon, C. H. Breaut, IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

Nikitin, V. V.

E. M. Belenov, V. L. Velichanskii, A. S. Zibrov, V. V. Nikitin, V. A. Sautenkov, A. V. Uskov, Sov. J. Quantum Electron. 13, 792 (1983).
[CrossRef]

Paslaski, J.

K. Vahala, J. Paslaski, A. Yariv, Appl. Phys. Lett. 46, 1025 (1985).
[CrossRef]

Sautenkov, V. A.

E. M. Belenov, V. L. Velichanskii, A. S. Zibrov, V. V. Nikitin, V. A. Sautenkov, A. V. Uskov, Sov. J. Quantum Electron. 13, 792 (1983).
[CrossRef]

Uskov, A. V.

E. M. Belenov, V. L. Velichanskii, A. S. Zibrov, V. V. Nikitin, V. A. Sautenkov, A. V. Uskov, Sov. J. Quantum Electron. 13, 792 (1983).
[CrossRef]

Vahala, K.

K. Vahala, J. Paslaski, A. Yariv, Appl. Phys. Lett. 46, 1025 (1985).
[CrossRef]

K. Vahala, A. Yariv, Appl. Phys. Lett. 45, 501 (1984).
[CrossRef]

K. Vahala, A. Yariv, IEEE J. Quantum Electron. QE-19, 1096 (1983).
[CrossRef]

Velichanskii, V. L.

E. M. Belenov, V. L. Velichanskii, A. S. Zibrov, V. V. Nikitin, V. A. Sautenkov, A. V. Uskov, Sov. J. Quantum Electron. 13, 792 (1983).
[CrossRef]

Yariv, A.

K. Vahala, J. Paslaski, A. Yariv, Appl. Phys. Lett. 46, 1025 (1985).
[CrossRef]

K. Vahala, A. Yariv, Appl. Phys. Lett. 45, 501 (1984).
[CrossRef]

K. Vahala, A. Yariv, IEEE J. Quantum Electron. QE-19, 1096 (1983).
[CrossRef]

A. Yariv, W. Caton, IEEE J. Quantum Electron. QE-10, 509 (1974).
[CrossRef]

Zibrov, A. S.

E. M. Belenov, V. L. Velichanskii, A. S. Zibrov, V. V. Nikitin, V. A. Sautenkov, A. V. Uskov, Sov. J. Quantum Electron. 13, 792 (1983).
[CrossRef]

Appl. Phys. Lett. (2)

K. Vahala, A. Yariv, Appl. Phys. Lett. 45, 501 (1984).
[CrossRef]

K. Vahala, J. Paslaski, A. Yariv, Appl. Phys. Lett. 46, 1025 (1985).
[CrossRef]

IEEE J. Quantum Electron. (3)

A. Yariv, W. Caton, IEEE J. Quantum Electron. QE-10, 509 (1974).
[CrossRef]

K. Vahala, A. Yariv, IEEE J. Quantum Electron. QE-19, 1096 (1983).
[CrossRef]

P. H. Laurent, A. Clairon, C. H. Breaut, IEEE J. Quantum Electron. 25, 1131 (1989).
[CrossRef]

Opt. Lett. (1)

Sov. J. Quantum Electron. (1)

E. M. Belenov, V. L. Velichanskii, A. S. Zibrov, V. V. Nikitin, V. A. Sautenkov, A. V. Uskov, Sov. J. Quantum Electron. 13, 792 (1983).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Reduction factor (Δν)laser/(Δν)S-T = (1 + α2)/(1 + )2 as a function of C and α.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = [ A 0 + δ ( t ) ] exp { i [ ω m t + ϕ ( t ) ] } ,
1 τ p = 1 τ p 0 + 2 C ϕ ˙ .
δ ˙ + ω 1 δ + A 0 C ϕ ˙ = Δ i ( t ) 2 ω m , A 0 ϕ ˙ ω 1 αδ = Δ r ( t ) 2 ω m ,
ω 1 A 0 2 ω m χ i ( 3 ) n 2 , α = χ r ( 3 ) χ i ( 3 ) , χ i ( 3 ) < 0 , ω 1 > 0 ,
δ ( t ) = 1 2 ω m { 0 t Δ i ( λ ) exp [ ω 1 ( t λ ) ] d λ + C 0 t Δ r ( λ ) exp [ ω 1 ( t λ ) ] d λ } ,
ϕ ( t ) = 1 2 ω m A 0 { 0 t Δ r ( λ ) exp [ ω 1 ( t λ ) ] d λ + ω 1 ω 1 0 t [ α Δ i ( λ ) Δ r ( λ ) ] d λ ω 1 ω 1 0 t [ α Δ i ( λ ) Δ r ( λ ) ] exp [ ω 1 ( t λ ) ] d λ } ,
ω 1 ω 1 ( 1 + ) ,
ϕ ( t 1 ) ϕ ( t 2 ) = W 4 A 0 2 ω m 2 ( 1 + α 2 ) ( 1 + ) 2 min ( t 1 , t 2 ) , ϕ 2 ( τ ) = W ( 1 + α 2 ) 4 A 0 2 ω m 2 ( 1 + ) 2 | τ | 2 K | τ | ,
Δ r ( t 1 ) Δ r ( t 2 ) = WD ( t 1 t 2 ) , Δ i ( t 1 ) Δ i ( t 2 ) = WD ( t 1 t 2 ) , Δ r ( t 1 ) Δ j ( t 2 ) = 0 , W = 4 ω m 3 ( N 2 Δ N ) V τ p 0 ,
E * ( t ) E ( t + τ ) = A 0 2 exp [ 1 / 2 ϕ 2 ( τ ) ] × exp ( i ω m τ ) + c . c . ,
W E ( ω ) = 1 π E * ( t ) E ( t + τ ) exp ( τ ) d τ + c . c . = A 0 2 π exp { [ i ( ω ω m ) K ] | τ | } d τ = 2 π A 0 2 K ( ω ω m ) 2 + K 2 .
( Δ ν ) laser = h ν m ( N 2 Δ N ) ( 1 + α 2 ) P e τ p 0 2 ( 1 + ) 2 = ( Δ ν ) S-T 1 + α 2 ( 1 + ) 2 ,
δ ( t ) δ ( t + τ ) = W 8 ω m 2 ω 1 ( 1 + C 2 ) ( 1 + ) exp ( ω 1 | τ | ) .
W Δ P ( Ω ) = 1 π Δ P ( t ) Δ P ( t + τ ) exp ( i Ω τ ) d τ = ( 4 π ) h ν m ( N 2 Δ N ) P e τ p 0 2 ( 1 + C 2 ) [ Ω 2 + ω 1 2 ( 1 + ) 2 ] .
W Δ P ( 0 ) ( C 0 ) W Δ P ( 0 ) ( C = 0 ) = ( 1 + C 2 ) ( 1 + ) 2 .
C = c β ( 1 R d ) 2 πn L d Δ ν ex ,

Metrics