Abstract

Spontaneous emission noise limits the capacity and range of photonic communications systems that use linear optical amplifiers. We consider here the question of phase detection in such systems. Amplitude-to-phase-noise conversion occurs owing to the nonlinear Kerr effect in the transmission fiber, resulting in optimal phase noise performance when the nonlinear phase shift of the system is approximately 1 rad. Error-free state-of-the-art systems that use phase detection at multigigabit rates are thereby limited to a range of a few thousand kilometers.

© 1990 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Parametric amplifiers in phase-noise-limited optical communications

Yi Mu and C. M. Savage
J. Opt. Soc. Am. B 9(1) 65-70 (1992)

Modeling nonlinear phase noise in differentially phase-modulated optical communication systems

Leonardo D. Coelho, Lutz Molle, Dirk Gross, Norbert Hanik, Ronald Freund, Christoph Caspar, Ernst-Dieter Schmidt, and Bernhard Spinnler
Opt. Express 17(5) 3226-3241 (2009)

Phase noise in fiber-optic parametric amplifiers and converters and its impact on sensing and communication systems

Slaven Moro, Ana Peric, Nikola Alic, Bryan Stossel, and Stojan Radic
Opt. Express 18(20) 21449-21460 (2010)

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
    [Crossref]
  2. E. Desurvire, Appl. Opt. 29, 3118 (1990).
    [Crossref] [PubMed]
  3. S. Saito, T. Imai, T. Sugie, N. Ohakawa, Y. Ichihashi, T. Ito, in Optical Fiber Communication, Vol. 1 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper PD2.

1990 (1)

1986 (1)

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[Crossref]

Desurvire, E.

Gordon, J. P.

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[Crossref]

Ichihashi, Y.

S. Saito, T. Imai, T. Sugie, N. Ohakawa, Y. Ichihashi, T. Ito, in Optical Fiber Communication, Vol. 1 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper PD2.

Imai, T.

S. Saito, T. Imai, T. Sugie, N. Ohakawa, Y. Ichihashi, T. Ito, in Optical Fiber Communication, Vol. 1 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper PD2.

Islam, M. N.

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[Crossref]

Ito, T.

S. Saito, T. Imai, T. Sugie, N. Ohakawa, Y. Ichihashi, T. Ito, in Optical Fiber Communication, Vol. 1 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper PD2.

Mollenauer, L. F.

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[Crossref]

Ohakawa, N.

S. Saito, T. Imai, T. Sugie, N. Ohakawa, Y. Ichihashi, T. Ito, in Optical Fiber Communication, Vol. 1 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper PD2.

Saito, S.

S. Saito, T. Imai, T. Sugie, N. Ohakawa, Y. Ichihashi, T. Ito, in Optical Fiber Communication, Vol. 1 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper PD2.

Sugie, T.

S. Saito, T. Imai, T. Sugie, N. Ohakawa, Y. Ichihashi, T. Ito, in Optical Fiber Communication, Vol. 1 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper PD2.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[Crossref]

Other (1)

S. Saito, T. Imai, T. Sugie, N. Ohakawa, Y. Ichihashi, T. Ito, in Optical Fiber Communication, Vol. 1 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1990), paper PD2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Phasor diagram for pulse propagation. The axes have been rotated to eliminate the nonlinear phase shift at the signal energy.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ϕ / z = ( 2 π n 2 / λ 0 A eff ) P = k 2 P ,
E ̅ = ( E a / L ) 0 L d z exp ( αz ) = E a ( G 1 ) / [ G ln ( G ) ] .
Q E a / [ N a β ( G 1 ) ] = E ̅ / [ βF ( G ) α L tot ] ,
δ ϕ 2 = 1 / 2 Q ,
( δ E ̅ / E ̅ ) 2 = 2 / N a Q
δ ϕ NL,amp = ( δ E ̅ / T ) k 2 nL .
δ ϕ NL 2 = ( 2 / 3 ) ϕ NL 2 / Q ,

Metrics