Abstract

An empty and highly attenuating external cavity was recently shown to have a powerful stabilizing influence on a synchronously mode-locked laser. Numerical simulations presented here demonstrate how this stabilization technique works. For an external cavity marginally shorter than the main cavity, the extremely weak reinjected signal isolates the mode-locked pulse from the noise background, which otherwise causes jitter. The new technique is likely to be of considerable importance for researchers using this popular type of mode-locked laser.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Beaud, J. Q. Bi, J. Schutz, W. Hodel, H. P. Weber, in Digest of Conference on Ultrafast Phenomena (Optical Society of America, Washington, D.C., 1990), paper WC8.
  2. J. M. Catherall, G. H. C. New, IEEE J. Quantum Electron. QE-22, 1593 (1986).
    [Crossref]
  3. G. H. C. New, J. M. Catherall, in Optical Instabilities, Vol. 4 of Cambridge Studies in Modern Optics (Cambridge U. Press, New York, 1986), p. 197.
  4. G. H. C. New, J. M. Catherall, in Digest of Conference on Ultrafast Phenomena (Optical Society of America, Washington, D.C., 1986), p. 24.
  5. G. H. C. New, Rep. Prog. Phys. 46, 877 (1983).
    [Crossref]
  6. G. H. C. New, J. M. Catherall, in Digest of Conference on Ultrafast Phenomena (Optical Society of America, Washington, D.C., 1984), p. 75.
  7. F. A. van Goor, Opt. Commun. 45, 404 (1983).
    [Crossref]
  8. J. A. Fleck, Phys. Rev. B 1, 84 (1970).
    [Crossref]
  9. S. M. J. Kelly, Opt. Commun. 70, 495 (1989).
    [Crossref]

1989 (1)

S. M. J. Kelly, Opt. Commun. 70, 495 (1989).
[Crossref]

1986 (1)

J. M. Catherall, G. H. C. New, IEEE J. Quantum Electron. QE-22, 1593 (1986).
[Crossref]

1983 (2)

G. H. C. New, Rep. Prog. Phys. 46, 877 (1983).
[Crossref]

F. A. van Goor, Opt. Commun. 45, 404 (1983).
[Crossref]

1970 (1)

J. A. Fleck, Phys. Rev. B 1, 84 (1970).
[Crossref]

Beaud, P.

P. Beaud, J. Q. Bi, J. Schutz, W. Hodel, H. P. Weber, in Digest of Conference on Ultrafast Phenomena (Optical Society of America, Washington, D.C., 1990), paper WC8.

Bi, J. Q.

P. Beaud, J. Q. Bi, J. Schutz, W. Hodel, H. P. Weber, in Digest of Conference on Ultrafast Phenomena (Optical Society of America, Washington, D.C., 1990), paper WC8.

Catherall, J. M.

J. M. Catherall, G. H. C. New, IEEE J. Quantum Electron. QE-22, 1593 (1986).
[Crossref]

G. H. C. New, J. M. Catherall, in Optical Instabilities, Vol. 4 of Cambridge Studies in Modern Optics (Cambridge U. Press, New York, 1986), p. 197.

G. H. C. New, J. M. Catherall, in Digest of Conference on Ultrafast Phenomena (Optical Society of America, Washington, D.C., 1986), p. 24.

G. H. C. New, J. M. Catherall, in Digest of Conference on Ultrafast Phenomena (Optical Society of America, Washington, D.C., 1984), p. 75.

Fleck, J. A.

J. A. Fleck, Phys. Rev. B 1, 84 (1970).
[Crossref]

Hodel, W.

P. Beaud, J. Q. Bi, J. Schutz, W. Hodel, H. P. Weber, in Digest of Conference on Ultrafast Phenomena (Optical Society of America, Washington, D.C., 1990), paper WC8.

Kelly, S. M. J.

S. M. J. Kelly, Opt. Commun. 70, 495 (1989).
[Crossref]

New, G. H. C.

J. M. Catherall, G. H. C. New, IEEE J. Quantum Electron. QE-22, 1593 (1986).
[Crossref]

G. H. C. New, Rep. Prog. Phys. 46, 877 (1983).
[Crossref]

G. H. C. New, J. M. Catherall, in Digest of Conference on Ultrafast Phenomena (Optical Society of America, Washington, D.C., 1984), p. 75.

G. H. C. New, J. M. Catherall, in Optical Instabilities, Vol. 4 of Cambridge Studies in Modern Optics (Cambridge U. Press, New York, 1986), p. 197.

G. H. C. New, J. M. Catherall, in Digest of Conference on Ultrafast Phenomena (Optical Society of America, Washington, D.C., 1986), p. 24.

Schutz, J.

P. Beaud, J. Q. Bi, J. Schutz, W. Hodel, H. P. Weber, in Digest of Conference on Ultrafast Phenomena (Optical Society of America, Washington, D.C., 1990), paper WC8.

van Goor, F. A.

F. A. van Goor, Opt. Commun. 45, 404 (1983).
[Crossref]

Weber, H. P.

P. Beaud, J. Q. Bi, J. Schutz, W. Hodel, H. P. Weber, in Digest of Conference on Ultrafast Phenomena (Optical Society of America, Washington, D.C., 1990), paper WC8.

IEEE J. Quantum Electron. (1)

J. M. Catherall, G. H. C. New, IEEE J. Quantum Electron. QE-22, 1593 (1986).
[Crossref]

Opt. Commun. (2)

F. A. van Goor, Opt. Commun. 45, 404 (1983).
[Crossref]

S. M. J. Kelly, Opt. Commun. 70, 495 (1989).
[Crossref]

Phys. Rev. B (1)

J. A. Fleck, Phys. Rev. B 1, 84 (1970).
[Crossref]

Rep. Prog. Phys. (1)

G. H. C. New, Rep. Prog. Phys. 46, 877 (1983).
[Crossref]

Other (4)

G. H. C. New, J. M. Catherall, in Digest of Conference on Ultrafast Phenomena (Optical Society of America, Washington, D.C., 1984), p. 75.

G. H. C. New, J. M. Catherall, in Optical Instabilities, Vol. 4 of Cambridge Studies in Modern Optics (Cambridge U. Press, New York, 1986), p. 197.

G. H. C. New, J. M. Catherall, in Digest of Conference on Ultrafast Phenomena (Optical Society of America, Washington, D.C., 1986), p. 24.

P. Beaud, J. Q. Bi, J. Schutz, W. Hodel, H. P. Weber, in Digest of Conference on Ultrafast Phenomena (Optical Society of America, Washington, D.C., 1990), paper WC8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cavity configuration used in the numerical model.

Fig. 2
Fig. 2

Pulse evolution for the laser in the absence of the external cavity, displayed at 20 transit intervals up to 1500 transits. The parameter values are given in the text.

Fig. 3
Fig. 3

Variation of the time duration of the dominant pulse in Fig. 2.

Fig. 4
Fig. 4

Logarithmic plot of the intensity profile at the one-thousandth transit in Fig. 2.

Fig. 5
Fig. 5

Emergence of a stable state in the presence of the external cavity with all other parameter values the same as in Fig. 2.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V i out = V i in exp ( A / 2 ) + S i ,
d A / d t = ( P Γ / t p π ) exp [ ( t / t p ) 2 ] | V | 2 [ exp ( A ) 1 ] A / T 1 a .
S i = ( 2 β Γ / t coh δt ) 1 / 2 j exp [ i ϕ j ( t i t j ) / t coh ] ,
V i out = ( 1 R f ) j V i in R f ( i j ) ,

Metrics