Abstract

Finite-clad Bragg-reflection waveguides are analyzed by a leaky-wave approach. The eigenvalue equation for TE and TM propagation is derived, and approximate expressions are given for the loss coefficient. Proper design of these structures is shown to lead to high polarization discrimination.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. G. Kazovky, Opt. Eng. 25, 575 (1986).
  2. T. Okoshi, K. Kikuchi, Coherent Optical Fiber Communications (KTK Scientific, Tokyo, 1988).
  3. J. Dakin, B. Culshaw, eds., Optical Fiber Sensors: Principles and Components (Artech House, Norwood, Mass., 1988), Vol. 1.
  4. L. L. Buhl, Electron. Lett. 19, 659 (1983).
    [CrossRef]
  5. I. P. Kaminow, W. L. Mammel, H. P. Weber, Appl. Opt. 13, 396 (1974).
    [CrossRef] [PubMed]
  6. K. Thyagarajan, Y. Bourbin, A. Enard, S. Vatoux, M. Papouchon, Opt. Lett. 10, 288 (1985).
    [CrossRef] [PubMed]
  7. M. A. Dugay, Y. Kokubun, T. L. Koch, Appl. Phys. Lett. 49, 13 (1986).
    [CrossRef]
  8. P. Yeh, A. Yariv, Opt. Commun. 19, 427 (1976).
    [CrossRef]
  9. P. Yeh, A. Yariv, C. S. Hong, J. Opt. Soc. Am. 67, 423 (1977).
    [CrossRef]
  10. A. Y. Cho, A. Yariv, P. Yeh, Appl. Phys. Lett. 30, 471 (1977).
    [CrossRef]
  11. P. Yeh, A. Yariv, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 11.
  12. J. Salzman, G. Lenz, IEEE Photon. Technol. Lett. 1, 319 (1989).
    [CrossRef]
  13. G. Lenz, J. Salzman, IEEE J. Quantum Electron. 26, 519 (1990).
    [CrossRef]
  14. D. Marcuse, Light Transmission Optics (Reinhold, New York, 1982), pp. 474–479.

1990 (1)

G. Lenz, J. Salzman, IEEE J. Quantum Electron. 26, 519 (1990).
[CrossRef]

1989 (1)

J. Salzman, G. Lenz, IEEE Photon. Technol. Lett. 1, 319 (1989).
[CrossRef]

1986 (2)

L. G. Kazovky, Opt. Eng. 25, 575 (1986).

M. A. Dugay, Y. Kokubun, T. L. Koch, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

1985 (1)

1983 (1)

L. L. Buhl, Electron. Lett. 19, 659 (1983).
[CrossRef]

1977 (2)

P. Yeh, A. Yariv, C. S. Hong, J. Opt. Soc. Am. 67, 423 (1977).
[CrossRef]

A. Y. Cho, A. Yariv, P. Yeh, Appl. Phys. Lett. 30, 471 (1977).
[CrossRef]

1976 (1)

P. Yeh, A. Yariv, Opt. Commun. 19, 427 (1976).
[CrossRef]

1974 (1)

Bourbin, Y.

Buhl, L. L.

L. L. Buhl, Electron. Lett. 19, 659 (1983).
[CrossRef]

Cho, A. Y.

A. Y. Cho, A. Yariv, P. Yeh, Appl. Phys. Lett. 30, 471 (1977).
[CrossRef]

Dugay, M. A.

M. A. Dugay, Y. Kokubun, T. L. Koch, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Enard, A.

Hong, C. S.

Kaminow, I. P.

Kazovky, L. G.

L. G. Kazovky, Opt. Eng. 25, 575 (1986).

Kikuchi, K.

T. Okoshi, K. Kikuchi, Coherent Optical Fiber Communications (KTK Scientific, Tokyo, 1988).

Koch, T. L.

M. A. Dugay, Y. Kokubun, T. L. Koch, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Kokubun, Y.

M. A. Dugay, Y. Kokubun, T. L. Koch, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Lenz, G.

G. Lenz, J. Salzman, IEEE J. Quantum Electron. 26, 519 (1990).
[CrossRef]

J. Salzman, G. Lenz, IEEE Photon. Technol. Lett. 1, 319 (1989).
[CrossRef]

Mammel, W. L.

Marcuse, D.

D. Marcuse, Light Transmission Optics (Reinhold, New York, 1982), pp. 474–479.

Okoshi, T.

T. Okoshi, K. Kikuchi, Coherent Optical Fiber Communications (KTK Scientific, Tokyo, 1988).

Papouchon, M.

Salzman, J.

G. Lenz, J. Salzman, IEEE J. Quantum Electron. 26, 519 (1990).
[CrossRef]

J. Salzman, G. Lenz, IEEE Photon. Technol. Lett. 1, 319 (1989).
[CrossRef]

Thyagarajan, K.

Vatoux, S.

Weber, H. P.

Yariv, A.

P. Yeh, A. Yariv, C. S. Hong, J. Opt. Soc. Am. 67, 423 (1977).
[CrossRef]

A. Y. Cho, A. Yariv, P. Yeh, Appl. Phys. Lett. 30, 471 (1977).
[CrossRef]

P. Yeh, A. Yariv, Opt. Commun. 19, 427 (1976).
[CrossRef]

P. Yeh, A. Yariv, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 11.

Yeh, P.

A. Y. Cho, A. Yariv, P. Yeh, Appl. Phys. Lett. 30, 471 (1977).
[CrossRef]

P. Yeh, A. Yariv, C. S. Hong, J. Opt. Soc. Am. 67, 423 (1977).
[CrossRef]

P. Yeh, A. Yariv, Opt. Commun. 19, 427 (1976).
[CrossRef]

P. Yeh, A. Yariv, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 11.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. A. Dugay, Y. Kokubun, T. L. Koch, Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

A. Y. Cho, A. Yariv, P. Yeh, Appl. Phys. Lett. 30, 471 (1977).
[CrossRef]

Electron. Lett. (1)

L. L. Buhl, Electron. Lett. 19, 659 (1983).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Lenz, J. Salzman, IEEE J. Quantum Electron. 26, 519 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Salzman, G. Lenz, IEEE Photon. Technol. Lett. 1, 319 (1989).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

P. Yeh, A. Yariv, Opt. Commun. 19, 427 (1976).
[CrossRef]

Opt. Eng. (1)

L. G. Kazovky, Opt. Eng. 25, 575 (1986).

Opt. Lett. (1)

Other (4)

T. Okoshi, K. Kikuchi, Coherent Optical Fiber Communications (KTK Scientific, Tokyo, 1988).

J. Dakin, B. Culshaw, eds., Optical Fiber Sensors: Principles and Components (Artech House, Norwood, Mass., 1988), Vol. 1.

D. Marcuse, Light Transmission Optics (Reinhold, New York, 1982), pp. 474–479.

P. Yeh, A. Yariv, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Refractive-index profile of a BRW with periodic claddings of finite extent, consisting of N periods.

Fig. 2
Fig. 2

Calculated propagation constant of a finite-clad BRW as a function of the core width t. The solid curves are calculated by approximation (7), and the dashed curves are from a numerical solution of Eq. (3). λ0 = 1.15 μm, n2 = 3.38, n1 = 2.89, ng = 2.8, Λ = 0.47 μm, and N = 5.

Fig. 3
Fig. 3

Calculated losses of a finite-clad BRW as a function of core width t. The solid curves are calculated by approximation (7), and the dashed curves are from a numerical solution of Eq. (3). λ0 = 1.15 μm, n2 = 3.38, n1 = 2.89, ng = 2.8, Λ = 0.47 μm, and N = 5.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ψ ( x ) = { C 0 cos ( k g x ) , x t / 2 , C 1 ψ K ( x ) , t / 2 x t / 2 + N / Λ , C 2 exp [ i k g ( x t / 2 N / Λ ) ] , x > t / 2 + N Λ ,
[ A l + n B l + n ] = ( 1 ) n [ cosh ( n K i Λ ) 1 η sinh ( n K i Λ ) η sinh ( n K i Λ ) cosh ( n K i Λ ) ] [ A l B l ] ,
tan δ g 2 = 1 σ + tanh Q 1 + tanh Q .
β = β r i α 2 ,
k g k g + i α β r 2 k g ,
1 / σ + i δ g / 2 1 + i δ g / 2 σ 1 σ i ( 1 tanh 2 Q ) .
| α | 4 k g β r t σ 2 ( 1 tanh 2 Q ) .
β TM = 2 π λ n 1 n 2 ( n 1 2 + n 2 2 ) 1 / 2 = ω c n 2 sin θ B

Metrics