Abstract

First-order diffraction efficiency of 50% into a single beam was obtained from a weak symmetric square metal diffraction grating operated in an étalon at the 632.8-nm He–Ne laser wavelength. Without the étalon the diffraction efficiency was just 2.7% in each of the two first-order beams. First-order diffraction efficiency gain as well as blazing and apodizing of the grating occur because of the resonant paraxial angular spectrum of the étalon.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. R. Johansen, D. I. Norman, E. J. Torok, J. Appl. Phys. 42, 1715 (1971).
    [CrossRef]
  2. G. L. Nelson, B. H. Harvey, J. Appl. Phys. 53, 1687 (1982).
    [CrossRef]
  3. G. F. Sauter, R. W. Honebrink, J. A. Krawczak, Appl. Opt. 20, 3566 (1981).
    [CrossRef] [PubMed]
  4. F. Gires, P. Tournois, C. R. Acad. Sci. 258, 6112 (1964).
  5. J. Kuhl, J. Heppner, IEEE J. Quantum Electron. QE-22, 182 (1986).
    [CrossRef]
  6. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 8.
  7. A. Moses, Optical Materials Properties (Plenum, New York, 1971).

1986 (1)

J. Kuhl, J. Heppner, IEEE J. Quantum Electron. QE-22, 182 (1986).
[CrossRef]

1982 (1)

G. L. Nelson, B. H. Harvey, J. Appl. Phys. 53, 1687 (1982).
[CrossRef]

1981 (1)

1971 (1)

T. R. Johansen, D. I. Norman, E. J. Torok, J. Appl. Phys. 42, 1715 (1971).
[CrossRef]

1964 (1)

F. Gires, P. Tournois, C. R. Acad. Sci. 258, 6112 (1964).

Gires, F.

F. Gires, P. Tournois, C. R. Acad. Sci. 258, 6112 (1964).

Harvey, B. H.

G. L. Nelson, B. H. Harvey, J. Appl. Phys. 53, 1687 (1982).
[CrossRef]

Heppner, J.

J. Kuhl, J. Heppner, IEEE J. Quantum Electron. QE-22, 182 (1986).
[CrossRef]

Honebrink, R. W.

Johansen, T. R.

T. R. Johansen, D. I. Norman, E. J. Torok, J. Appl. Phys. 42, 1715 (1971).
[CrossRef]

Krawczak, J. A.

Kuhl, J.

J. Kuhl, J. Heppner, IEEE J. Quantum Electron. QE-22, 182 (1986).
[CrossRef]

Moses, A.

A. Moses, Optical Materials Properties (Plenum, New York, 1971).

Nelson, G. L.

G. L. Nelson, B. H. Harvey, J. Appl. Phys. 53, 1687 (1982).
[CrossRef]

Norman, D. I.

T. R. Johansen, D. I. Norman, E. J. Torok, J. Appl. Phys. 42, 1715 (1971).
[CrossRef]

Sauter, G. F.

Torok, E. J.

T. R. Johansen, D. I. Norman, E. J. Torok, J. Appl. Phys. 42, 1715 (1971).
[CrossRef]

Tournois, P.

F. Gires, P. Tournois, C. R. Acad. Sci. 258, 6112 (1964).

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 8.

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 8.

Appl. Opt. (1)

C. R. Acad. Sci. (1)

F. Gires, P. Tournois, C. R. Acad. Sci. 258, 6112 (1964).

IEEE J. Quantum Electron. (1)

J. Kuhl, J. Heppner, IEEE J. Quantum Electron. QE-22, 182 (1986).
[CrossRef]

J. Appl. Phys. (2)

T. R. Johansen, D. I. Norman, E. J. Torok, J. Appl. Phys. 42, 1715 (1971).
[CrossRef]

G. L. Nelson, B. H. Harvey, J. Appl. Phys. 53, 1687 (1982).
[CrossRef]

Other (2)

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 8.

A. Moses, Optical Materials Properties (Plenum, New York, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cross section of a blazed apodized grating–étalon configuration that provides first-order diffraction efficiency gain.

Fig. 2
Fig. 2

Calculated paraxial resonant angular spectrum from a Gires–Tournois étalon that contains a 14% intensity loss mechanism.

Fig. 3
Fig. 3

Stylus profilometer scan of a small region of a weak metal diffraction grating prepared using lift-off techniques. The vertical axis is the ruling depth, and the horizontal axis is the distance along the grating.

Fig. 4
Fig. 4

Photodetected deep first- and zero-order fringes from a length-swept grating–étalon system.

Fig. 5
Fig. 5

First-order diffraction gain from a 2.7% single-pass efficiency metal grating in an étalon as a function of the reflectivity of the I/O mirror.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I = R + e ( e 2 R 1 / 2 cos Φ ) 1 + e R 1 / 2 ( e R 1 / 2 2 cos Φ ) ,
Φ = 2 kd ( n 2 sin 2 Ω ) 1 / 2 .
R = [ 1 4 e 2 + e 4 + R 1 / 2 e ( e 2 + 1 ) ] 2 [ e ( e 2 3 ) ] 2 .
Γ = ( c 2 π nd ) arccos [ e 2 ( 2 R ) + 2 e 1 2 e R 2 ] ,

Metrics