Abstract

We predict theoretically a stable configuration for the operation of a multimode, intracavity-doubled, diode-pumped Nd:YAG laser. Experimental results are presented that demonstrate the elimination of chaotic amplitude fluctuations by rotatory alignment of the KTP crystal.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Baer, J. Opt. Soc. Am. B 3, 1175 (1986).
    [CrossRef]
  2. M. Oka, S. Kubota, Opt. Lett. 13, 805 (1988).
    [CrossRef] [PubMed]
  3. G. James, E. Harrell, R. Roy, Phys. Rev. A 41, 2778 (1990).
    [CrossRef] [PubMed]
  4. X.-G. Wu, P. Mandel, J. Opt. Soc. Am. B 4, 1870 (1987).
    [CrossRef]
  5. P. Mandel, X.-G. Wu, J. Opt. Soc. Am. B 3, 940 (1986).
    [CrossRef]

1990 (1)

G. James, E. Harrell, R. Roy, Phys. Rev. A 41, 2778 (1990).
[CrossRef] [PubMed]

1988 (1)

1987 (1)

1986 (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Intracavity-doubled Nd:YAG laser setup showing the angle φ between the fast axes of the KTP and the YAG crystals.

Fig. 2
Fig. 2

Typical plot (N = 0, M = 3, i.e., three similarly polarized modes) showing the variation of the dimensionless coefficient g with KTP phase delay δ and relative orientation angle φ for an arbitrarily chosen value of ξ = 0.1π, where ξ is the birefringence-induced phase delay of the YAG crystal. The shaded region of the δφ plane corresponds to parameter values where the stability constraint [inequality (3a)] holds, i.e., g < 0.04 for the parameter values given in the text, and stable laser output is predicted for the case of three modes in the same polarization direction.

Fig. 3
Fig. 3

Representative time traces of the doubled output intensity for various KTP orientation angles. Stable operation was observed from 0° to 80°, where 0° was chosen arbitrarily.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

τ c d I j d t = I j ( G j α g I j 2 k j μ k I k ) ,
τ f d G j d t = γ G j ( 1 + I j + β k j I k ) , j , k = 1 , 2 , , M + N ,
g = 4 u 1 2 u 2 2 / ( u 1 2 + u 2 2 ) 2 ,
u = [ u 1 u 2 ] = [ 2 Im ( a ) 2 1 [ Re ( a ) ] 2 2 y ] , y 0 ,
a = e i ξ ( cos 2 φ e i δ + sin 2 φ e i δ ) ,
y = sin 2 φ sin δ .
g < τ c τ f [ 1 + ( M 1 ) β ] ( 1 + p p ) , M 0 , N = 0 ,
g > 2 3 1 3 τ c τ f ( 1 + β ) ( 1 + p p ) , M = N = 1 ,
g > ( 2 M 4 M 1 ) 1 ( 4 M 1 ) τ c τ f [ 1 + ( 2 M 1 ) β ] × ( 1 + p p ) , g < τ c τ f [ 1 + ( 2 M 1 ) β ] ( 1 + p p ) , M = N > 1 ,

Metrics