Abstract

We describe dispersion compensation of a cw mode-locked optical parametric oscillator based on a thin crystal of KTiOPO4 pumped intracavity by a standard colliding-pulse mode-locked dye laser, The device provides potential cw tunability from 0.72 to 4.5 μm with milliwatt outputs. Transform-limited pulses should be possible throughout the tuning range;here we report pulse widths of 105 fsec at 840 nm and 108 Hz. Active stabilization of the oscillator cavity is also discussed.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Edelstein, E. S. Wachman, C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
    [Crossref]
  2. R. L. Fork, O. E. Martinez, J. P. Gordon, Opt. Lett. 9, 150 (1984).
    [Crossref] [PubMed]
  3. S. C. Mehendale, P. K. Gupta, Opt. Commun. 68, 301 (1988).
    [Crossref]
  4. J. M. Diels, J. J. Fontaine, I. C. McMichael, F. Simoni, Appl. Opt. 24, 1270 (1985).
    [Crossref] [PubMed]
  5. See, e.g., D. M. Kim, J. Kuhl, R. Lambrich, D. von der Linde, Opt. Commun. 27, 123 (1978).
    [Crossref]
  6. J. Chesnoy, L. Fini, Opt. Lett. 11, 635 (1986).
    [Crossref] [PubMed]
  7. M. F. Becker, D. J. Kuizenga, D. W. Phillion, A. E. Siegman, J. Appl. Phys. 45, 3996 (1974).
    [Crossref]
  8. T. R. Zhang, G. Focht, P. E. Williams, M. C. Downer, IEEE J. Quantum Electron. 24, 1877 (1988).
    [Crossref]
  9. D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
    [Crossref]
  10. Group-delay calculations for KTP are based on Sellmeier coefficients in H. Vanherzeele, J. D. Bierlein, F. C. Zumsteg, Appl. Opt. 27, 3314 (1988).
    [Crossref] [PubMed]
  11. K. L. Sala, G. A. Kenney-Wallace, G. E. Hall, IEEE J. Quantum Electron. QE-16, 990 (1980).
    [Crossref]

1989 (1)

D. C. Edelstein, E. S. Wachman, C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
[Crossref]

1988 (4)

S. C. Mehendale, P. K. Gupta, Opt. Commun. 68, 301 (1988).
[Crossref]

T. R. Zhang, G. Focht, P. E. Williams, M. C. Downer, IEEE J. Quantum Electron. 24, 1877 (1988).
[Crossref]

D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
[Crossref]

Group-delay calculations for KTP are based on Sellmeier coefficients in H. Vanherzeele, J. D. Bierlein, F. C. Zumsteg, Appl. Opt. 27, 3314 (1988).
[Crossref] [PubMed]

1986 (1)

1985 (1)

1984 (1)

1980 (1)

K. L. Sala, G. A. Kenney-Wallace, G. E. Hall, IEEE J. Quantum Electron. QE-16, 990 (1980).
[Crossref]

1978 (1)

See, e.g., D. M. Kim, J. Kuhl, R. Lambrich, D. von der Linde, Opt. Commun. 27, 123 (1978).
[Crossref]

1974 (1)

M. F. Becker, D. J. Kuizenga, D. W. Phillion, A. E. Siegman, J. Appl. Phys. 45, 3996 (1974).
[Crossref]

Becker, M. F.

M. F. Becker, D. J. Kuizenga, D. W. Phillion, A. E. Siegman, J. Appl. Phys. 45, 3996 (1974).
[Crossref]

Bierlein, J. D.

Bosenberg, W. R.

D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
[Crossref]

Cheng, L. K.

D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
[Crossref]

Chesnoy, J.

Diels, J. M.

Downer, M. C.

T. R. Zhang, G. Focht, P. E. Williams, M. C. Downer, IEEE J. Quantum Electron. 24, 1877 (1988).
[Crossref]

Edelstein, D. C.

D. C. Edelstein, E. S. Wachman, C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
[Crossref]

D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
[Crossref]

Fini, L.

Focht, G.

T. R. Zhang, G. Focht, P. E. Williams, M. C. Downer, IEEE J. Quantum Electron. 24, 1877 (1988).
[Crossref]

Fontaine, J. J.

Fork, R. L.

Gordon, J. P.

Gupta, P. K.

S. C. Mehendale, P. K. Gupta, Opt. Commun. 68, 301 (1988).
[Crossref]

Hall, G. E.

K. L. Sala, G. A. Kenney-Wallace, G. E. Hall, IEEE J. Quantum Electron. QE-16, 990 (1980).
[Crossref]

Kenney-Wallace, G. A.

K. L. Sala, G. A. Kenney-Wallace, G. E. Hall, IEEE J. Quantum Electron. QE-16, 990 (1980).
[Crossref]

Kim, D. M.

See, e.g., D. M. Kim, J. Kuhl, R. Lambrich, D. von der Linde, Opt. Commun. 27, 123 (1978).
[Crossref]

Kuhl, J.

See, e.g., D. M. Kim, J. Kuhl, R. Lambrich, D. von der Linde, Opt. Commun. 27, 123 (1978).
[Crossref]

Kuizenga, D. J.

M. F. Becker, D. J. Kuizenga, D. W. Phillion, A. E. Siegman, J. Appl. Phys. 45, 3996 (1974).
[Crossref]

Lambrich, R.

See, e.g., D. M. Kim, J. Kuhl, R. Lambrich, D. von der Linde, Opt. Commun. 27, 123 (1978).
[Crossref]

Martinez, O. E.

McMichael, I. C.

Mehendale, S. C.

S. C. Mehendale, P. K. Gupta, Opt. Commun. 68, 301 (1988).
[Crossref]

Phillion, D. W.

M. F. Becker, D. J. Kuizenga, D. W. Phillion, A. E. Siegman, J. Appl. Phys. 45, 3996 (1974).
[Crossref]

Sala, K. L.

K. L. Sala, G. A. Kenney-Wallace, G. E. Hall, IEEE J. Quantum Electron. QE-16, 990 (1980).
[Crossref]

Siegman, A. E.

M. F. Becker, D. J. Kuizenga, D. W. Phillion, A. E. Siegman, J. Appl. Phys. 45, 3996 (1974).
[Crossref]

Simoni, F.

Tang, C. L.

D. C. Edelstein, E. S. Wachman, C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
[Crossref]

D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
[Crossref]

Vanherzeele, H.

von der Linde, D.

See, e.g., D. M. Kim, J. Kuhl, R. Lambrich, D. von der Linde, Opt. Commun. 27, 123 (1978).
[Crossref]

Wachman, E. S.

D. C. Edelstein, E. S. Wachman, C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
[Crossref]

D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
[Crossref]

Williams, P. E.

T. R. Zhang, G. Focht, P. E. Williams, M. C. Downer, IEEE J. Quantum Electron. 24, 1877 (1988).
[Crossref]

Zhang, T. R.

T. R. Zhang, G. Focht, P. E. Williams, M. C. Downer, IEEE J. Quantum Electron. 24, 1877 (1988).
[Crossref]

Zumsteg, F. C.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

D. C. Edelstein, E. S. Wachman, C. L. Tang, Appl. Phys. Lett. 54, 1728 (1989).
[Crossref]

D. C. Edelstein, E. S. Wachman, L. K. Cheng, W. R. Bosenberg, C. L. Tang, Appl. Phys. Lett. 52, 2211 (1988).
[Crossref]

IEEE J. Quantum Electron. (2)

T. R. Zhang, G. Focht, P. E. Williams, M. C. Downer, IEEE J. Quantum Electron. 24, 1877 (1988).
[Crossref]

K. L. Sala, G. A. Kenney-Wallace, G. E. Hall, IEEE J. Quantum Electron. QE-16, 990 (1980).
[Crossref]

J. Appl. Phys. (1)

M. F. Becker, D. J. Kuizenga, D. W. Phillion, A. E. Siegman, J. Appl. Phys. 45, 3996 (1974).
[Crossref]

Opt. Commun. (2)

S. C. Mehendale, P. K. Gupta, Opt. Commun. 68, 301 (1988).
[Crossref]

See, e.g., D. M. Kim, J. Kuhl, R. Lambrich, D. von der Linde, Opt. Commun. 27, 123 (1978).
[Crossref]

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Configuration of the cw femtosecond OPO. The optics and beam line for the signal wave (S) are indicated by the thick lines; the dotted lines indicate idler beams (I) that exit the KTP crystal as shown. Four prisms mounted in a vertical plane are included for GVD compensation in the OPO cavity. The back mirror is mounted on a piezoelectric transducer (T) for length adjustment. It is controlled by the feedback circuit (F), whose inputs are obtained from two photodiodes (PD1, PD2) that sample portions of the signal spectrum dispersed off a grating (GR). The OPO is pumped by a CPM dye laser (thin lines) with an AR+-laser pump (Ar+), a gain jet (G), and an absorber jet (A).

Fig. 2
Fig. 2

AC of signal pulses at 840 nm for near-zero net cavity GVD; the insets show an interferometric AC envelope (right) and spectrum (left). The pulse width (a sech2 fit) is 105 fsec. The time–bandwidth product of ΔvΔτ ≈ 0.35 and the symmetric spectrum are indicative of transform-limited pulses.

Fig. 3
Fig. 3

Variation of the signal pulse width with OPO prism glass at 840 nm for a pump pulse width of 170 fsec. In the region of greater negative GVD, operation is stable with pulse widths of up to 220 fsec.

Fig. 4
Fig. 4

Signal output power with a speaker at 30 Hz in contact with one of the OPO mirror mounts (a) without and (b) with stabilization. The 2–3% rms fluctuations in the stabilized output are similar to those observed on this time scale without the added noise.

Metrics