Abstract

A more exact model is suggested for the description of nonlinear light propagation in fibers. In addition to the previously discussed self-phase modulation, parametric, dispersion, self-steepening, and Raman self-scattering effects, this model also takes into account the Stokes losses associated with the material excitation, the dependence of nonlinear effects on the light frequency, and the frequency dependence of the fiber mode area. The self-steepening effect is taken into account more correctly in comparison with previous models. The effects influence considerably the femtosecond soliton propagation. The model is generalized for the case of various fiber dispersion properties along the fiber length. The possibility of obtaining high-quality pulses of less than 15-fsec duration by compression of fundamental solitons with approximately 100-fsec duration in fibers with slowly decreasing dispersion is shown.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription