Abstract
The optical transmissivity of a mirrorless, nonlinear, absorbing dielectric thin film is investigated numerically. The dielectric function in the film region is dependent on the intensity of the electromagnetic field. Multivalued solutions of transmissivity as a function of incident power are calculated for the steady-state wave equation. The numerical solution is applied to two different model dielectric functions. As the absorption parameter is increased, larger values of incident intensity are required to switch the systems between stable output states. Also, the peak values of transmissivity are reduced as the absorption is increased.
© 1990 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Equations (8)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Metrics
You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription