Abstract

The bend-induced optical loss in a monomode fiber has been studied as a continuous function of wavelength in the range 1.2–1.6 μm. The loss was observed to be an oscillatory function of wavelength. These observations were explained by using a model based on interference between the guided core mode in the fiber and a “whispering gallery” mode ejected from the core by the bend. The wavelengths of the minima in the oscillatory function were accurately predicted by the model when the propagation of optical power in the fiber buffer coating was taken into account.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Lewin, D. C. Chang, E. F. Kuester, Electromagnetic Waves and Curved Structures (Peregrinus, London, 1977).
  2. D. Gloge, IEEE Trans. Microwave Theory Tech. MTT-23, 106 (1975).
    [CrossRef]
  3. D. Marcuse, Bell Syst. Tech. J. 55, 1445 (1976).
  4. J. N. Fields, C. Asawa, O. G. Ramer, M. K. Barnowski, J. Acoust. Soc. Am. 67, 816 (1980).
    [CrossRef]
  5. C. M. de Blok, P. Mathiesse, Electron. Lett. 20, 109 (1984).
    [CrossRef]
  6. P. V. Andrews, D. Owens, Proc. Soc. Photo-Opt. Instrum. Eng. 522, 18 (1985).
  7. H. Mahlein, Fiber Integrated Opt. 4, 4 (1983).
  8. A. Dandridge, A. D. Kersey, Proc. Soc. Photo-Opt. Instrum. Eng. 798, 158 (1987).
  9. B. E. Jones, R. E. Spooncer, Proc. Soc. Photo-Opt. Instrum. Eng. 514, 223 (1984).
  10. D. Marcuse, J. Opt. Soc. Am. 66, 216 (1976).
    [CrossRef]
  11. D. Gloge, Appl. Opt. 11, 2506 (1972).
    [CrossRef] [PubMed]
  12. W. A. Gambling, H. Matsumura, C. M. Ragdale, Opt. Quantum Electron. 11, 43 (1979).
    [CrossRef]
  13. W. A. Gambling, H. Matsumura, C. M. Ragdale, R. A. Sammut, IEE J. Micro Opt. Acoust. 2, 134 (1978).
    [CrossRef]
  14. W. A. Gambling, D. N. Payne, H. Matsumura, Electron. Lett. 12, 567 (1976).
    [CrossRef]
  15. A. J. Harris, P. F. Castle, IEEE J. Lightwave Technol. LT-4, 34 (1986).
    [CrossRef]
  16. S. K. Yao, C. K. Asawa, G. F. Lipscomb, Appl. Opt. 21, 3059 (1982).
    [CrossRef] [PubMed]
  17. A. W. Snyder, J. D. Love, IEEE Trans. Microwave Theory Tech. MTT-23, 134 (1975).
    [CrossRef]
  18. I. Valiente, C. Vassalo, Electron. Lett. 25, 1544 (1989).
    [CrossRef]

1989 (1)

I. Valiente, C. Vassalo, Electron. Lett. 25, 1544 (1989).
[CrossRef]

1987 (1)

A. Dandridge, A. D. Kersey, Proc. Soc. Photo-Opt. Instrum. Eng. 798, 158 (1987).

1986 (1)

A. J. Harris, P. F. Castle, IEEE J. Lightwave Technol. LT-4, 34 (1986).
[CrossRef]

1985 (1)

P. V. Andrews, D. Owens, Proc. Soc. Photo-Opt. Instrum. Eng. 522, 18 (1985).

1984 (2)

B. E. Jones, R. E. Spooncer, Proc. Soc. Photo-Opt. Instrum. Eng. 514, 223 (1984).

C. M. de Blok, P. Mathiesse, Electron. Lett. 20, 109 (1984).
[CrossRef]

1983 (1)

H. Mahlein, Fiber Integrated Opt. 4, 4 (1983).

1982 (1)

1980 (1)

J. N. Fields, C. Asawa, O. G. Ramer, M. K. Barnowski, J. Acoust. Soc. Am. 67, 816 (1980).
[CrossRef]

1979 (1)

W. A. Gambling, H. Matsumura, C. M. Ragdale, Opt. Quantum Electron. 11, 43 (1979).
[CrossRef]

1978 (1)

W. A. Gambling, H. Matsumura, C. M. Ragdale, R. A. Sammut, IEE J. Micro Opt. Acoust. 2, 134 (1978).
[CrossRef]

1976 (3)

W. A. Gambling, D. N. Payne, H. Matsumura, Electron. Lett. 12, 567 (1976).
[CrossRef]

D. Marcuse, Bell Syst. Tech. J. 55, 1445 (1976).

D. Marcuse, J. Opt. Soc. Am. 66, 216 (1976).
[CrossRef]

1975 (2)

D. Gloge, IEEE Trans. Microwave Theory Tech. MTT-23, 106 (1975).
[CrossRef]

A. W. Snyder, J. D. Love, IEEE Trans. Microwave Theory Tech. MTT-23, 134 (1975).
[CrossRef]

1972 (1)

Andrews, P. V.

P. V. Andrews, D. Owens, Proc. Soc. Photo-Opt. Instrum. Eng. 522, 18 (1985).

Asawa, C.

J. N. Fields, C. Asawa, O. G. Ramer, M. K. Barnowski, J. Acoust. Soc. Am. 67, 816 (1980).
[CrossRef]

Asawa, C. K.

Barnowski, M. K.

J. N. Fields, C. Asawa, O. G. Ramer, M. K. Barnowski, J. Acoust. Soc. Am. 67, 816 (1980).
[CrossRef]

Castle, P. F.

A. J. Harris, P. F. Castle, IEEE J. Lightwave Technol. LT-4, 34 (1986).
[CrossRef]

Chang, D. C.

L. Lewin, D. C. Chang, E. F. Kuester, Electromagnetic Waves and Curved Structures (Peregrinus, London, 1977).

Dandridge, A.

A. Dandridge, A. D. Kersey, Proc. Soc. Photo-Opt. Instrum. Eng. 798, 158 (1987).

de Blok, C. M.

C. M. de Blok, P. Mathiesse, Electron. Lett. 20, 109 (1984).
[CrossRef]

Fields, J. N.

J. N. Fields, C. Asawa, O. G. Ramer, M. K. Barnowski, J. Acoust. Soc. Am. 67, 816 (1980).
[CrossRef]

Gambling, W. A.

W. A. Gambling, H. Matsumura, C. M. Ragdale, Opt. Quantum Electron. 11, 43 (1979).
[CrossRef]

W. A. Gambling, H. Matsumura, C. M. Ragdale, R. A. Sammut, IEE J. Micro Opt. Acoust. 2, 134 (1978).
[CrossRef]

W. A. Gambling, D. N. Payne, H. Matsumura, Electron. Lett. 12, 567 (1976).
[CrossRef]

Gloge, D.

D. Gloge, IEEE Trans. Microwave Theory Tech. MTT-23, 106 (1975).
[CrossRef]

D. Gloge, Appl. Opt. 11, 2506 (1972).
[CrossRef] [PubMed]

Harris, A. J.

A. J. Harris, P. F. Castle, IEEE J. Lightwave Technol. LT-4, 34 (1986).
[CrossRef]

Jones, B. E.

B. E. Jones, R. E. Spooncer, Proc. Soc. Photo-Opt. Instrum. Eng. 514, 223 (1984).

Kersey, A. D.

A. Dandridge, A. D. Kersey, Proc. Soc. Photo-Opt. Instrum. Eng. 798, 158 (1987).

Kuester, E. F.

L. Lewin, D. C. Chang, E. F. Kuester, Electromagnetic Waves and Curved Structures (Peregrinus, London, 1977).

Lewin, L.

L. Lewin, D. C. Chang, E. F. Kuester, Electromagnetic Waves and Curved Structures (Peregrinus, London, 1977).

Lipscomb, G. F.

Love, J. D.

A. W. Snyder, J. D. Love, IEEE Trans. Microwave Theory Tech. MTT-23, 134 (1975).
[CrossRef]

Mahlein, H.

H. Mahlein, Fiber Integrated Opt. 4, 4 (1983).

Marcuse, D.

D. Marcuse, J. Opt. Soc. Am. 66, 216 (1976).
[CrossRef]

D. Marcuse, Bell Syst. Tech. J. 55, 1445 (1976).

Mathiesse, P.

C. M. de Blok, P. Mathiesse, Electron. Lett. 20, 109 (1984).
[CrossRef]

Matsumura, H.

W. A. Gambling, H. Matsumura, C. M. Ragdale, Opt. Quantum Electron. 11, 43 (1979).
[CrossRef]

W. A. Gambling, H. Matsumura, C. M. Ragdale, R. A. Sammut, IEE J. Micro Opt. Acoust. 2, 134 (1978).
[CrossRef]

W. A. Gambling, D. N. Payne, H. Matsumura, Electron. Lett. 12, 567 (1976).
[CrossRef]

Owens, D.

P. V. Andrews, D. Owens, Proc. Soc. Photo-Opt. Instrum. Eng. 522, 18 (1985).

Payne, D. N.

W. A. Gambling, D. N. Payne, H. Matsumura, Electron. Lett. 12, 567 (1976).
[CrossRef]

Ragdale, C. M.

W. A. Gambling, H. Matsumura, C. M. Ragdale, Opt. Quantum Electron. 11, 43 (1979).
[CrossRef]

W. A. Gambling, H. Matsumura, C. M. Ragdale, R. A. Sammut, IEE J. Micro Opt. Acoust. 2, 134 (1978).
[CrossRef]

Ramer, O. G.

J. N. Fields, C. Asawa, O. G. Ramer, M. K. Barnowski, J. Acoust. Soc. Am. 67, 816 (1980).
[CrossRef]

Sammut, R. A.

W. A. Gambling, H. Matsumura, C. M. Ragdale, R. A. Sammut, IEE J. Micro Opt. Acoust. 2, 134 (1978).
[CrossRef]

Snyder, A. W.

A. W. Snyder, J. D. Love, IEEE Trans. Microwave Theory Tech. MTT-23, 134 (1975).
[CrossRef]

Spooncer, R. E.

B. E. Jones, R. E. Spooncer, Proc. Soc. Photo-Opt. Instrum. Eng. 514, 223 (1984).

Valiente, I.

I. Valiente, C. Vassalo, Electron. Lett. 25, 1544 (1989).
[CrossRef]

Vassalo, C.

I. Valiente, C. Vassalo, Electron. Lett. 25, 1544 (1989).
[CrossRef]

Yao, S. K.

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

D. Marcuse, Bell Syst. Tech. J. 55, 1445 (1976).

Electron. Lett. (3)

C. M. de Blok, P. Mathiesse, Electron. Lett. 20, 109 (1984).
[CrossRef]

W. A. Gambling, D. N. Payne, H. Matsumura, Electron. Lett. 12, 567 (1976).
[CrossRef]

I. Valiente, C. Vassalo, Electron. Lett. 25, 1544 (1989).
[CrossRef]

Fiber Integrated Opt. (1)

H. Mahlein, Fiber Integrated Opt. 4, 4 (1983).

IEE J. Micro Opt. Acoust. (1)

W. A. Gambling, H. Matsumura, C. M. Ragdale, R. A. Sammut, IEE J. Micro Opt. Acoust. 2, 134 (1978).
[CrossRef]

IEEE J. Lightwave Technol. (1)

A. J. Harris, P. F. Castle, IEEE J. Lightwave Technol. LT-4, 34 (1986).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

A. W. Snyder, J. D. Love, IEEE Trans. Microwave Theory Tech. MTT-23, 134 (1975).
[CrossRef]

D. Gloge, IEEE Trans. Microwave Theory Tech. MTT-23, 106 (1975).
[CrossRef]

J. Acoust. Soc. Am. (1)

J. N. Fields, C. Asawa, O. G. Ramer, M. K. Barnowski, J. Acoust. Soc. Am. 67, 816 (1980).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Quantum Electron. (1)

W. A. Gambling, H. Matsumura, C. M. Ragdale, Opt. Quantum Electron. 11, 43 (1979).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (3)

A. Dandridge, A. D. Kersey, Proc. Soc. Photo-Opt. Instrum. Eng. 798, 158 (1987).

B. E. Jones, R. E. Spooncer, Proc. Soc. Photo-Opt. Instrum. Eng. 514, 223 (1984).

P. V. Andrews, D. Owens, Proc. Soc. Photo-Opt. Instrum. Eng. 522, 18 (1985).

Other (1)

L. Lewin, D. C. Chang, E. F. Kuester, Electromagnetic Waves and Curved Structures (Peregrinus, London, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Geometry of the WG mode interference model for (a) unbuffered and (b) two-component buffered fiber. R, bend radius; d, separation of the fiber axis and radiation caustic15; nco, ncl, nb1, nb2, refractive indices of the fiber core, cladding, and inner and outer buffers, respectively; Z, γ, core arc length and angle, respectively; L, L1, L2, L3, WG ray lengths; y1, y2, y3, outside radii of cladding and inner and outer buffers, respectively.

Fig. 2
Fig. 2

Experimental arrangement. IEEE, parallel interface.

Fig. 3
Fig. 3

Bend loss as a function of wavelength for the fiber of Table 1. (a) Bend diameter 13 mm, arc length 120°. (b) Bend diameter 10 mm, arc length 60°. The curves are spline fits to the experimental data, shown as squares. The dashed arrows and solid arrows are the theoretically predicted positions of loss minima using the models of Figs. 1(a) and 1(b), respectively.

Fig. 4
Fig. 4

Bend loss as a function of wavelength for the fiber of Table 1; bend diameter 10 mm, bend length 180°. Spline fit to the experimental data with (dashed curve) and without (solid curve) index-matching gel applied to the exterior of the fiber.

Tables (1)

Tables Icon

Table 1. Fiber Parameters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2 π λ l β Z + φ = 2 m π , m an   integer ,
l = 2 ( n cl L 1 + n b 1 L 2 + n b 2 L 3 ) ,

Metrics