Abstract

A method for planar measurement of temperature in a compressible flow by means of two-line laser-induced iodine fluorescence is proposed. Temperature is determined from the ratio of the intensities of fluorescence, which are obtained by irradiation of two laser beams of different wavelength. Use of a high-sensitivity vidicon camera permits multiple-point measurements of temperature in the flow field. This method is applied to a supersonic free jet. It is found that the results obtained by P(16)/R(18) (514.720 nm) and P(26)/R(28) (514.942 nm) absorption lines in the transition of B 3IIou+ (υ′ = 43) ← X 1Σg+ (υ″ = 0) can predict temperature below 300 K with an accuracy of ±5 K.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Alden, P. Grafstrom, H. Lundberg, S. Svanberg, Opt. Lett. 8, 241 (1983).
    [CrossRef] [PubMed]
  2. J. M. Seitzman, G. Kychakoff, R. Hanson, Opt. Lett. 10, 439 (1985).
    [CrossRef] [PubMed]
  3. S. Gerstenkorn, P. Luc, Atlas du Spectre d' Absorption de la Molecule d' Iode (Edition du Centre National de la Recherche Scientique, Paris, 1978).
  4. J. C. McDaniel, “Investigation of laser-induced iodine fluorescence for the measurement of density in compressible flows,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1981).
  5. B. Hiller, R. K. Hanson, Appl. Opt. 27, 33 (1988).
    [CrossRef] [PubMed]
  6. R. J. Hartfield, J. D. Abbitt, J. C. McDaniel, Opt. Lett. 14, 850 (1989).
    [CrossRef] [PubMed]
  7. G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand Reinhold, New York, 1950), p. 208.
  8. H. Ashkenas, F. S. Sherman, Rarefied Gas Dynamics (Academic, New York, 1966), Vol. 2, p. 84.

1989 (1)

1988 (1)

1985 (1)

1983 (1)

Abbitt, J. D.

Alden, M.

Ashkenas, H.

H. Ashkenas, F. S. Sherman, Rarefied Gas Dynamics (Academic, New York, 1966), Vol. 2, p. 84.

Gerstenkorn, S.

S. Gerstenkorn, P. Luc, Atlas du Spectre d' Absorption de la Molecule d' Iode (Edition du Centre National de la Recherche Scientique, Paris, 1978).

Grafstrom, P.

Hanson, R.

Hanson, R. K.

Hartfield, R. J.

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand Reinhold, New York, 1950), p. 208.

Hiller, B.

Kychakoff, G.

Luc, P.

S. Gerstenkorn, P. Luc, Atlas du Spectre d' Absorption de la Molecule d' Iode (Edition du Centre National de la Recherche Scientique, Paris, 1978).

Lundberg, H.

McDaniel, J. C.

R. J. Hartfield, J. D. Abbitt, J. C. McDaniel, Opt. Lett. 14, 850 (1989).
[CrossRef] [PubMed]

J. C. McDaniel, “Investigation of laser-induced iodine fluorescence for the measurement of density in compressible flows,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1981).

Seitzman, J. M.

Sherman, F. S.

H. Ashkenas, F. S. Sherman, Rarefied Gas Dynamics (Academic, New York, 1966), Vol. 2, p. 84.

Svanberg, S.

Appl. Opt. (1)

Opt. Lett. (3)

Other (4)

S. Gerstenkorn, P. Luc, Atlas du Spectre d' Absorption de la Molecule d' Iode (Edition du Centre National de la Recherche Scientique, Paris, 1978).

J. C. McDaniel, “Investigation of laser-induced iodine fluorescence for the measurement of density in compressible flows,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1981).

G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand Reinhold, New York, 1950), p. 208.

H. Ashkenas, F. S. Sherman, Rarefied Gas Dynamics (Academic, New York, 1966), Vol. 2, p. 84.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Relations between the ratio of the fluorescence intensities and the temperature.

Fig. 2
Fig. 2

(a) Visualized image of a supersonic free jet (Ps = 16 kPa, Pb = 110 Pa) by using the P(16)/R(18) absorption line. Black corresponds to a low signal, and white corresponds to a high signal. (b) The same as in (a) but using the P(26)/R(28) absorption line. The flow is moving from the left to right.

Fig. 3
Fig. 3

Pseudo-color display of the temperature field of a supersonic free jet, which is measured by the P(16)/R(18) and P(26)/R(28) absorption lines.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F = C A j i A j i + Q B i j If 1 N I 2 ,
f = f υ f r = 1 Q υ exp ( E υ k T ) ( 2 J + 1 ) Q r × exp [ B υ h c J ( J + 1 ) k T ] .
F 1 F 2 = ( B i j ) 1 f 1 ( B i j ) 2 f 2 ,
F 1 F 2 = S ( J 1 ) f r ( J 1 , T ) S ( J 2 ) f r ( J 2 , T ) .
F 1 [ P ( 26 ) / R ( 28 ) ] F 2 [ P ( 16 ) / R ( 18 ) ] = S ( 26 ) f r ( 26 , T ) + S ( 28 ) f r ( 28 , T ) S ( 16 ) f r ( 16 , T ) + S ( 18 ) f r ( 18 , T ) .

Metrics