Abstract

We have reduced the switching energy for an all-optical soliton dragging nor gate to 5.8 pJ by using a two-fiber configuration and optimizing the fiber and laser parameters. The cascadable nor gate has a fanout of six, restores both the logic level and timing, and can operate at bit rates of up to 0.2 THz. In addition, we show that soliton dragging can be represented as a generalized exclusive-or module with high functionality. Two such modules can be interconnected as nor and and gates or broadcast and routing switches.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. N. Islam, Opt. Lett. 15, 417 (1990).
    [CrossRef] [PubMed]
  2. M. N. Islam, Opt. Lett. 14, 1257 (1989);M. N. Islam, C. D. Poole, J. P. Gordon, Opt. Lett. 14, 1011 (1989).
    [CrossRef] [PubMed]
  3. J. P. Gordon, Opt. Lett. 11, 662 (1986).
    [CrossRef] [PubMed]
  4. M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Sauer, T. Y. Chang, B. I. Miller, IEEE J. Quantum Electron. 25, 2454 (1989).
    [CrossRef]
  5. Other fiber parameters are dispersion D = 7.25 psec/(nm-km) and effective core area Aeff ∼ 4 ×10−7 cm2.

1990

1989

M. N. Islam, Opt. Lett. 14, 1257 (1989);M. N. Islam, C. D. Poole, J. P. Gordon, Opt. Lett. 14, 1011 (1989).
[CrossRef] [PubMed]

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Sauer, T. Y. Chang, B. I. Miller, IEEE J. Quantum Electron. 25, 2454 (1989).
[CrossRef]

1986

Bar-Joseph, I.

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Sauer, T. Y. Chang, B. I. Miller, IEEE J. Quantum Electron. 25, 2454 (1989).
[CrossRef]

Chang, T. Y.

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Sauer, T. Y. Chang, B. I. Miller, IEEE J. Quantum Electron. 25, 2454 (1989).
[CrossRef]

Gordon, J. P.

Islam, M. N.

M. N. Islam, Opt. Lett. 15, 417 (1990).
[CrossRef] [PubMed]

M. N. Islam, Opt. Lett. 14, 1257 (1989);M. N. Islam, C. D. Poole, J. P. Gordon, Opt. Lett. 14, 1011 (1989).
[CrossRef] [PubMed]

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Sauer, T. Y. Chang, B. I. Miller, IEEE J. Quantum Electron. 25, 2454 (1989).
[CrossRef]

Miller, B. I.

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Sauer, T. Y. Chang, B. I. Miller, IEEE J. Quantum Electron. 25, 2454 (1989).
[CrossRef]

Sauer, N.

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Sauer, T. Y. Chang, B. I. Miller, IEEE J. Quantum Electron. 25, 2454 (1989).
[CrossRef]

Soccolich, C. E.

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Sauer, T. Y. Chang, B. I. Miller, IEEE J. Quantum Electron. 25, 2454 (1989).
[CrossRef]

Sunderman, E. R.

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Sauer, T. Y. Chang, B. I. Miller, IEEE J. Quantum Electron. 25, 2454 (1989).
[CrossRef]

IEEE J. Quantum Electron.

M. N. Islam, E. R. Sunderman, C. E. Soccolich, I. Bar-Joseph, N. Sauer, T. Y. Chang, B. I. Miller, IEEE J. Quantum Electron. 25, 2454 (1989).
[CrossRef]

Opt. Lett.

Other

Other fiber parameters are dispersion D = 7.25 psec/(nm-km) and effective core area Aeff ∼ 4 ×10−7 cm2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental configuration for testing an all-optical nor gate. The inset shows a simplified schematic of the nor gate with control or power supply C along one axis and signals A and B polarized orthogonally. BS's, beam splitters.

Fig. 2
Fig. 2

Correlation of the clock with the nor gate output. The signal energy is 5.8 pJ, and the gain (control out/signal in) is six.

Fig. 3
Fig. 3

Output from a nor gate configured as an inverter whose output is fed back to the input. (Top) Feedback blocked, (bottom) feedback added.

Fig. 4
Fig. 4

Time shift of the control pulse from soliton dragging as a function of the signal energy. The control pulse energy is 48 pJ, and the fiber length is 350 m.

Fig. 5
Fig. 5

(a) Basic building block consisting of a birefringent fiber surrounded by two polarizing beam splitters represented by a four-port GEO module. Two GEO modules can be configured as (b) broadcast or buffer switches, (c) nor and AND gates, and (d) routing switches.

Metrics