Abstract

We describe an argon-ion-laser-pumped erbium-doped fiber laser at 1.55 μm that incorporates low-rate frequency modulation of an intracavity acousto-optic modulator to provide repeated, continuous tuning of the output spectrum. The spectral width of this wavelength-swept fiber laser is as large as 20 nm with 9 mW of output power, even though erbium in silica has a mostly homogeneously broadened gain. The time-averaged visibility curve for a 14-nm-wide source indicates a short (160-μm) coherence length, which is of interest for fiber-optic gyroscopes that operate with long integration times and short-coherence-length sources.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Bohm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, Electron. Lett. 17, 352 (1981).
    [CrossRef]
  2. C. A. Millar, I. D. Miller, R. J. Ainslie, S. P. Craig, J. R. Armitage, Electron. Lett. 23, 865 (1987).
    [CrossRef]
  3. P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, IEEE Photon. Technol. Lett. 2, 178 (1990).
    [CrossRef]
  4. E. Desurvire, J. R. Simpson, IEEE J. Lightwave Technol. 7, 835 (1989).
    [CrossRef]
  5. D. J. Taylor, S. E. Harris, S. T. K. Niel, T. W. Hänsen, Appl. Phys. Lett. 19, 269 (1971).
    [CrossRef]
  6. G. A. Coquin, K. W. Cheung, Electron. Lett. 24, 599 (1988).
    [CrossRef]
  7. P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, Opt. Lett. 15, 273 (1990).
    [CrossRef] [PubMed]

1990 (2)

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, IEEE Photon. Technol. Lett. 2, 178 (1990).
[CrossRef]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, Opt. Lett. 15, 273 (1990).
[CrossRef] [PubMed]

1989 (1)

E. Desurvire, J. R. Simpson, IEEE J. Lightwave Technol. 7, 835 (1989).
[CrossRef]

1988 (1)

G. A. Coquin, K. W. Cheung, Electron. Lett. 24, 599 (1988).
[CrossRef]

1987 (1)

C. A. Millar, I. D. Miller, R. J. Ainslie, S. P. Craig, J. R. Armitage, Electron. Lett. 23, 865 (1987).
[CrossRef]

1981 (1)

K. Bohm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, Electron. Lett. 17, 352 (1981).
[CrossRef]

1971 (1)

D. J. Taylor, S. E. Harris, S. T. K. Niel, T. W. Hänsen, Appl. Phys. Lett. 19, 269 (1971).
[CrossRef]

Ainslie, R. J.

C. A. Millar, I. D. Miller, R. J. Ainslie, S. P. Craig, J. R. Armitage, Electron. Lett. 23, 865 (1987).
[CrossRef]

Armitage, J. R.

C. A. Millar, I. D. Miller, R. J. Ainslie, S. P. Craig, J. R. Armitage, Electron. Lett. 23, 865 (1987).
[CrossRef]

Bohm, K.

K. Bohm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, Electron. Lett. 17, 352 (1981).
[CrossRef]

Cheung, K. W.

G. A. Coquin, K. W. Cheung, Electron. Lett. 24, 599 (1988).
[CrossRef]

Coquin, G. A.

G. A. Coquin, K. W. Cheung, Electron. Lett. 24, 599 (1988).
[CrossRef]

Craig, S. P.

C. A. Millar, I. D. Miller, R. J. Ainslie, S. P. Craig, J. R. Armitage, Electron. Lett. 23, 865 (1987).
[CrossRef]

Desurvire, E.

E. Desurvire, J. R. Simpson, IEEE J. Lightwave Technol. 7, 835 (1989).
[CrossRef]

Digonnet, M. J. F.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, IEEE Photon. Technol. Lett. 2, 178 (1990).
[CrossRef]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, Opt. Lett. 15, 273 (1990).
[CrossRef] [PubMed]

Hänsen, T. W.

D. J. Taylor, S. E. Harris, S. T. K. Niel, T. W. Hänsen, Appl. Phys. Lett. 19, 269 (1971).
[CrossRef]

Harris, S. E.

D. J. Taylor, S. E. Harris, S. T. K. Niel, T. W. Hänsen, Appl. Phys. Lett. 19, 269 (1971).
[CrossRef]

Kim, B. Y.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, IEEE Photon. Technol. Lett. 2, 178 (1990).
[CrossRef]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, Opt. Lett. 15, 273 (1990).
[CrossRef] [PubMed]

Marten, P.

K. Bohm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, Electron. Lett. 17, 352 (1981).
[CrossRef]

Millar, C. A.

C. A. Millar, I. D. Miller, R. J. Ainslie, S. P. Craig, J. R. Armitage, Electron. Lett. 23, 865 (1987).
[CrossRef]

Miller, I. D.

C. A. Millar, I. D. Miller, R. J. Ainslie, S. P. Craig, J. R. Armitage, Electron. Lett. 23, 865 (1987).
[CrossRef]

Niel, S. T. K.

D. J. Taylor, S. E. Harris, S. T. K. Niel, T. W. Hänsen, Appl. Phys. Lett. 19, 269 (1971).
[CrossRef]

Petermann, K.

K. Bohm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, Electron. Lett. 17, 352 (1981).
[CrossRef]

Simpson, J. R.

E. Desurvire, J. R. Simpson, IEEE J. Lightwave Technol. 7, 835 (1989).
[CrossRef]

Taylor, D. J.

D. J. Taylor, S. E. Harris, S. T. K. Niel, T. W. Hänsen, Appl. Phys. Lett. 19, 269 (1971).
[CrossRef]

Ulrich, R.

K. Bohm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, Electron. Lett. 17, 352 (1981).
[CrossRef]

Weidel, E.

K. Bohm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, Electron. Lett. 17, 352 (1981).
[CrossRef]

Wysocki, P. F.

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, IEEE Photon. Technol. Lett. 2, 178 (1990).
[CrossRef]

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, Opt. Lett. 15, 273 (1990).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

D. J. Taylor, S. E. Harris, S. T. K. Niel, T. W. Hänsen, Appl. Phys. Lett. 19, 269 (1971).
[CrossRef]

Electron. Lett. (3)

G. A. Coquin, K. W. Cheung, Electron. Lett. 24, 599 (1988).
[CrossRef]

K. Bohm, P. Marten, K. Petermann, E. Weidel, R. Ulrich, Electron. Lett. 17, 352 (1981).
[CrossRef]

C. A. Millar, I. D. Miller, R. J. Ainslie, S. P. Craig, J. R. Armitage, Electron. Lett. 23, 865 (1987).
[CrossRef]

IEEE J. Lightwave Technol. (1)

E. Desurvire, J. R. Simpson, IEEE J. Lightwave Technol. 7, 835 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, IEEE Photon. Technol. Lett. 2, 178 (1990).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental configuration used for the WSFL. L1, 18× objective lens; L2, 10× objective lens; HR, flat high reflector; DM, dichroic mirror with T = 85% at 1.55 μm and R ≈ 99% at 514.5 nm; GP, germanium photodetector (replaced by Michelson interferometer for visibility measurements).

Fig. 2
Fig. 2

Solid curves: the wavelengths produced for each acoustic frequency. Vertical lines: wavelengths swept by a 200-Hz sinusoidal frequency modulation with 0.55-MHz maximum deviation from the center frequency.

Fig. 3
Fig. 3

Curve (a): unswept spectrum with acoustic frequency of 79.1 MHz. Curve (b): swept spectrum with 79.1-MHz center frequency and 200-MHz sinusoidal modulation with 0.55-MHz deviation from center.

Fig. 4
Fig. 4

Dynamic response of the WSFL for sinusoidal (dotted curves) and sawtooth (solid curves) sweep wave forms with a maximum deviation of 0.85 MHz from the center frequency of 78.85 MHz. (a) Output power and (b) swept width versus the sweep rate.

Fig. 5
Fig. 5

Visibility curves measured with a 50-Hz oscillating mirror in Michelson interferometer for a single unswept line [curve (a)] and a 14-nm-wide, 500-MHz sawtooth swept WSFL with 100-Hz low-pass filtered signal [curve (b)]. The dashed curve is the calculated visibility for a 14.1-nm square spectrum and is presented for comparison.

Metrics