Abstract

Corner-cube retroreflectors with the dihedral angles slightly different from a right angle are proposed for optical chip-to-chip interconnections. The spot pattern of the corner cube may follow the shift of the source and is approximately invariant to the incident angle. This retroreflective property substantially reduces the requirement for alignment accuracy. The design of a corner cube for given source and image positions using a ray-tracing algorithm and iteration procedure is presented.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athal, Proc. IEEE 72, 850 (1984).
    [CrossRef]
  2. L. D. Hutcheson, P. Haugen, A. Husain, IEEE Spectrum 24 (3), 30 (1987).
  3. J. Jahns, A. Huang, Appl. Opt. 28, 1602 (1989).
    [CrossRef] [PubMed]
  4. D. Z. Tsang, in Digest of Conference on Optical Computing (Optical Society of America, Washington, D.C., 1989), p. 146.
  5. P. R. Yoder, J. Opt. Soc. Am. 48, 496 (1958).
    [CrossRef]
  6. D. A. Thomas, J. C. Wyant, J. Opt. Soc. Am. 67, 467 (1977).
    [CrossRef]
  7. R. K. Kostuk, Y. T. Huang, D. Hetherington, M. Kato, Appl. Opt. 28, 4939 (1989).
    [CrossRef] [PubMed]
  8. Y. Sheng, Appl. Opt. 29, 1101 (1990).
    [CrossRef] [PubMed]

1990 (1)

1989 (2)

1987 (1)

L. D. Hutcheson, P. Haugen, A. Husain, IEEE Spectrum 24 (3), 30 (1987).

1984 (1)

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athal, Proc. IEEE 72, 850 (1984).
[CrossRef]

1977 (1)

1958 (1)

Athal, R. A.

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athal, Proc. IEEE 72, 850 (1984).
[CrossRef]

Goodman, J. W.

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athal, Proc. IEEE 72, 850 (1984).
[CrossRef]

Haugen, P.

L. D. Hutcheson, P. Haugen, A. Husain, IEEE Spectrum 24 (3), 30 (1987).

Hetherington, D.

Huang, A.

Huang, Y. T.

Husain, A.

L. D. Hutcheson, P. Haugen, A. Husain, IEEE Spectrum 24 (3), 30 (1987).

Hutcheson, L. D.

L. D. Hutcheson, P. Haugen, A. Husain, IEEE Spectrum 24 (3), 30 (1987).

Jahns, J.

Kato, M.

Kostuk, R. K.

Kung, S. Y.

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athal, Proc. IEEE 72, 850 (1984).
[CrossRef]

Leonberger, F. J.

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athal, Proc. IEEE 72, 850 (1984).
[CrossRef]

Sheng, Y.

Thomas, D. A.

Tsang, D. Z.

D. Z. Tsang, in Digest of Conference on Optical Computing (Optical Society of America, Washington, D.C., 1989), p. 146.

Wyant, J. C.

Yoder, P. R.

Appl. Opt. (3)

IEEE Spectrum (1)

L. D. Hutcheson, P. Haugen, A. Husain, IEEE Spectrum 24 (3), 30 (1987).

J. Opt. Soc. Am. (2)

Proc. IEEE (1)

J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athal, Proc. IEEE 72, 850 (1984).
[CrossRef]

Other (1)

D. Z. Tsang, in Digest of Conference on Optical Computing (Optical Society of America, Washington, D.C., 1989), p. 146.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical chip-to-chip interconnections with a corner-cube array.

Fig. 2
Fig. 2

Front view of a corner cube showing the numbers of the faces and the division of the aperture into six equal segments.

Fig. 3
Fig. 3

Coordinate systems in Fig. 1.

Fig. 4
Fig. 4

Spot patterns of corner cubes that are useful for interconnections.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A 1 = 1 , A 2 = sin θ 1 , 2 , A 3 = sin θ 1 , 3 , B 1 = 0 , B 2 = cos θ 1 , 2 , B 3 = ( sin θ 2 , 3 A 2 A 3 ) / B 2 , C 1 = 0 , C 2 = 0 , C 3 = ( 1 A 3 2 B 3 2 ) 1 / 2 .
[ S e 1 S e 2 S e 3 ] i = [ ( 1 2 A i 2 ) 2 A i B i 2 A i C i 2 A i B i ( 1 2 B i 2 ) 2 B i C i 2 A i C i 2 B i C i ( 1 2 C i 2 ) ] [ S e 1 S e 2 S e 3 ] ,
[ S ' ] i j k = [ R ] k [ R ] j [ R ] i [ S ] = [ R ] i j k [ S ] ,
cos δ 1 , 2 , 3 = 2 [ S e 1 2 ( A 2 2 + A 3 2 ) + S e 2 2 B 3 2 + S e 3 2 ( A 3 2 + B 3 2 ) ] + 4 ( A 3 B 3 S e 1 S e 2 A 2 B 3 S e 1 S e 3 + A 2 A 3 S e 2 S e 3 ) 1 , cos δ 2 , 3 , 1 = 2 [ S e 1 2 ( A 2 2 + A 3 2 ) + S e 2 2 B 3 2 + S e 3 2 ( A 3 2 + B 3 2 ) ] + 4 ( A 3 B 3 S e 1 S e 2 + A 2 B 3 S e 1 S e 3 + A 2 A 3 S e 2 S e 3 ) 1 , cos δ 3 , 1 , 2 = 2 [ S e 1 2 ( A 2 2 + A 3 2 ) + S e 2 2 B 3 2 + S e 3 2 ( A 3 2 + B 3 2 ) ] + 4 ( A 3 B 3 S e 1 S e 2 + A 2 B 3 S e 1 S e 3 A 2 A 3 S e 2 S e 3 ) 1 .
cos δ m , n = 1 3 O ( sin 2 θ ) S e m S e n 1
sin δ [ m , n = 1 3 O ( sin 2 θ ) S e m S e n ] 1 / 2 ,
δ / S e m O ( sin θ ) .

Metrics