Abstract

A novel device arrangement for all-optical switching that permits efficient exploitation of waveguide nonlinearities is discussed. It is based on a long optical fiber loop mirror with an integral short asymmetrically located optical amplifier. The device performance is demonstrated by using a Nd3+-doped fiber amplifier. Switching is obtained for peak signal powers of less than 1 W and an amplifier pump power of 10 mW.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. B. Poole, D. N. Payne, M. E. Fermann, Electron. Lett. 21, 737 (1985).
    [CrossRef]
  2. S. B. Poole, J. E. Townsend, D. N. Payne, M. E. Fermann, G. J. Cowle, R. I. Laming, P. R. Morkel, IEEE J. Lightwave Technol. 7, 1242 (1989).
    [CrossRef]
  3. R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, Electron. Lett. 23, 1026 (1987).
    [CrossRef]
  4. K. Suzuki, Y. Kimura, M. S. Nakazawa, Opt. Lett. 14, 865 (1989).
    [CrossRef] [PubMed]
  5. G. I. Stegeman, R. H. Stolen, J. Opt. Soc. Am. B 6, 652 (1989), and references therein.
    [CrossRef]
  6. N. J. Doran, D. Wood, Opt. Lett. 13, 56 (1988).
    [CrossRef] [PubMed]
  7. K. J. Blow, N. J. Doran, B. K. Nayar, Opt. Lett. 14, 754 (1989).
    [CrossRef] [PubMed]
  8. M. N. Islam, E. R. Sunderman, R. H. Stolen, W. Pleibel, J. R. Simpson, Opt. Lett. 14, 811 (1989).
    [CrossRef] [PubMed]
  9. E. P. Ippen, H. A. Haus, L. Y. Liu, J. Opt. Soc. Am. B 6, 1736 (1989).
    [CrossRef]
  10. L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
    [CrossRef]
  11. S. De Silvestri, P. Laporta, and O. Svelto, IEEE J. Quantum Electron. QE-20, 533 (1984).
    [CrossRef]

1989 (6)

1988 (1)

1987 (1)

R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, Electron. Lett. 23, 1026 (1987).
[CrossRef]

1986 (1)

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

1985 (1)

S. B. Poole, D. N. Payne, M. E. Fermann, Electron. Lett. 21, 737 (1985).
[CrossRef]

1984 (1)

S. De Silvestri, P. Laporta, and O. Svelto, IEEE J. Quantum Electron. QE-20, 533 (1984).
[CrossRef]

Blow, K. J.

Cowle, G. J.

S. B. Poole, J. E. Townsend, D. N. Payne, M. E. Fermann, G. J. Cowle, R. I. Laming, P. R. Morkel, IEEE J. Lightwave Technol. 7, 1242 (1989).
[CrossRef]

De Silvestri, S.

S. De Silvestri, P. Laporta, and O. Svelto, IEEE J. Quantum Electron. QE-20, 533 (1984).
[CrossRef]

Doran, N. J.

Fermann, M. E.

S. B. Poole, J. E. Townsend, D. N. Payne, M. E. Fermann, G. J. Cowle, R. I. Laming, P. R. Morkel, IEEE J. Lightwave Technol. 7, 1242 (1989).
[CrossRef]

S. B. Poole, D. N. Payne, M. E. Fermann, Electron. Lett. 21, 737 (1985).
[CrossRef]

Gordon, J. P.

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

Haus, H. A.

Ippen, E. P.

Islam, M. N.

M. N. Islam, E. R. Sunderman, R. H. Stolen, W. Pleibel, J. R. Simpson, Opt. Lett. 14, 811 (1989).
[CrossRef] [PubMed]

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

Jauncey, I. M.

R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, Electron. Lett. 23, 1026 (1987).
[CrossRef]

Kimura, Y.

Laming, R. I.

S. B. Poole, J. E. Townsend, D. N. Payne, M. E. Fermann, G. J. Cowle, R. I. Laming, P. R. Morkel, IEEE J. Lightwave Technol. 7, 1242 (1989).
[CrossRef]

Laporta, P.

S. De Silvestri, P. Laporta, and O. Svelto, IEEE J. Quantum Electron. QE-20, 533 (1984).
[CrossRef]

Liu, L. Y.

Mears, R. J.

R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, Electron. Lett. 23, 1026 (1987).
[CrossRef]

Mollenauer, L. F.

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

Morkel, P. R.

S. B. Poole, J. E. Townsend, D. N. Payne, M. E. Fermann, G. J. Cowle, R. I. Laming, P. R. Morkel, IEEE J. Lightwave Technol. 7, 1242 (1989).
[CrossRef]

Nakazawa, M. S.

Nayar, B. K.

Payne, D. N.

S. B. Poole, J. E. Townsend, D. N. Payne, M. E. Fermann, G. J. Cowle, R. I. Laming, P. R. Morkel, IEEE J. Lightwave Technol. 7, 1242 (1989).
[CrossRef]

R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, Electron. Lett. 23, 1026 (1987).
[CrossRef]

S. B. Poole, D. N. Payne, M. E. Fermann, Electron. Lett. 21, 737 (1985).
[CrossRef]

Pleibel, W.

Poole, S. B.

S. B. Poole, J. E. Townsend, D. N. Payne, M. E. Fermann, G. J. Cowle, R. I. Laming, P. R. Morkel, IEEE J. Lightwave Technol. 7, 1242 (1989).
[CrossRef]

S. B. Poole, D. N. Payne, M. E. Fermann, Electron. Lett. 21, 737 (1985).
[CrossRef]

Reekie, L.

R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, Electron. Lett. 23, 1026 (1987).
[CrossRef]

Simpson, J. R.

Stegeman, G. I.

Stolen, R. H.

Sunderman, E. R.

Suzuki, K.

Townsend, J. E.

S. B. Poole, J. E. Townsend, D. N. Payne, M. E. Fermann, G. J. Cowle, R. I. Laming, P. R. Morkel, IEEE J. Lightwave Technol. 7, 1242 (1989).
[CrossRef]

Wood, D.

Electron. Lett. (2)

S. B. Poole, D. N. Payne, M. E. Fermann, Electron. Lett. 21, 737 (1985).
[CrossRef]

R. J. Mears, L. Reekie, I. M. Jauncey, D. N. Payne, Electron. Lett. 23, 1026 (1987).
[CrossRef]

IEEE J. Lightwave Technol. (1)

S. B. Poole, J. E. Townsend, D. N. Payne, M. E. Fermann, G. J. Cowle, R. I. Laming, P. R. Morkel, IEEE J. Lightwave Technol. 7, 1242 (1989).
[CrossRef]

IEEE J. Quantum Electron. (2)

L. F. Mollenauer, J. P. Gordon, M. N. Islam, IEEE J. Quantum Electron. QE-22, 157 (1986).
[CrossRef]

S. De Silvestri, P. Laporta, and O. Svelto, IEEE J. Quantum Electron. QE-20, 533 (1984).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Basic parts of the NALM. The signal is launched at port 1, splits equally at the coupler, and experiences a differential phase delay along the two propagation directions owing to the asymmetrically located amplifier.

Fig. 2
Fig. 2

Transmitted and reflected peak powers (as percentage of input signal power) as a function of the peak input signal power for different values of small-signal gain.

Fig. 3
Fig. 3

Pulse-width conservation parameter S (in the positive group-velocity dispersion regime for Gaussian input pulses) as a function of the soliton period calculated for a peak signal input power that produces a nonlinear differential phase shift between the peaks of the two counterpropagating pulses of π. The curve with infinite gain corresponds to an ideal switch, and the curve with unity gain corresponds to a typical conventional NOLM.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

δ ϕ c = π λ s n 2 g I s 0 L ,
δ ϕ cc = π λ s n 2 I s 0 L ,
I f 0 = λ s n 2 L ( g 1 ) .
P f 0 P 1 = 2 α ( g + 1 ) 1 z 0 z ,
P cf P 1 = 2 α g α ( g + 1 ) 1 z 0 z .

Metrics