Abstract

Speckle appearing in synthetic-aperture-radar images degrades the information contained in these images. Speckle noise can be suppressed by adapted local processing techniques, permitting the definition of statistical parameters inside a small window centered on each pixel of the image. Two processing algorithms are examined; the first one uses the intensity as a variable, and the second one works on a homomorphic transformation of the image intensity. A statistical model for speckle noise that takes into account correlation in multilook imagery has been used to develop these processing algorithms. Several experimental results of processed Seasat-A synthetic-aperture-radar images are discussed.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Lee, Opt. Eng. 25, 636 (1986).
  2. G. V. April, E. R. Harvey, Proc. Soc. Photo-Opt. Instrum. Eng. 976, 2 (1988).
  3. V. S. Frost, J. A. Stiles, K. S. Shanmugan, J. C. Holtzman, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4, 157 (1982).
    [CrossRef]
  4. J. M. Durand, B. J. Gimonet, J. R. Perbos, IEEE Trans. Geosci. Remote Sensing GE-25, 629 (1987).
    [CrossRef]
  5. S. S. Jiang, A. A. Sawchuk, Appl. Opt. 25, 2326 (1986).
    [CrossRef] [PubMed]
  6. H. H. Arsenault, G. April, J. Opt. Soc. Am. 66, 1160 (1976).
    [CrossRef]
  7. A. K. Jain, C. R. Christensen, Proc. Soc. Photo-Opt. Instrum. Eng. 243, 46 (1980).
  8. J. S. Lee, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-2, 165 (1980).
    [CrossRef]
  9. J. W. Goodman, in Laser Speckle and Related Phenomena, J. C. Dainty, ed., Vol. 9 of Topics in Applied Physics (Springer-Verlag, New York, 1975), pp. 9–75.
    [CrossRef]
  10. B. R. Frieden, Probability, Statistical Optics and Data Testing (Springer-Verlag, New York, 1983).
    [CrossRef]

1988

G. V. April, E. R. Harvey, Proc. Soc. Photo-Opt. Instrum. Eng. 976, 2 (1988).

1987

J. M. Durand, B. J. Gimonet, J. R. Perbos, IEEE Trans. Geosci. Remote Sensing GE-25, 629 (1987).
[CrossRef]

1986

1982

V. S. Frost, J. A. Stiles, K. S. Shanmugan, J. C. Holtzman, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4, 157 (1982).
[CrossRef]

1980

A. K. Jain, C. R. Christensen, Proc. Soc. Photo-Opt. Instrum. Eng. 243, 46 (1980).

J. S. Lee, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-2, 165 (1980).
[CrossRef]

1976

April, G.

April, G. V.

G. V. April, E. R. Harvey, Proc. Soc. Photo-Opt. Instrum. Eng. 976, 2 (1988).

Arsenault, H. H.

Christensen, C. R.

A. K. Jain, C. R. Christensen, Proc. Soc. Photo-Opt. Instrum. Eng. 243, 46 (1980).

Durand, J. M.

J. M. Durand, B. J. Gimonet, J. R. Perbos, IEEE Trans. Geosci. Remote Sensing GE-25, 629 (1987).
[CrossRef]

Frieden, B. R.

B. R. Frieden, Probability, Statistical Optics and Data Testing (Springer-Verlag, New York, 1983).
[CrossRef]

Frost, V. S.

V. S. Frost, J. A. Stiles, K. S. Shanmugan, J. C. Holtzman, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4, 157 (1982).
[CrossRef]

Gimonet, B. J.

J. M. Durand, B. J. Gimonet, J. R. Perbos, IEEE Trans. Geosci. Remote Sensing GE-25, 629 (1987).
[CrossRef]

Goodman, J. W.

J. W. Goodman, in Laser Speckle and Related Phenomena, J. C. Dainty, ed., Vol. 9 of Topics in Applied Physics (Springer-Verlag, New York, 1975), pp. 9–75.
[CrossRef]

Harvey, E. R.

G. V. April, E. R. Harvey, Proc. Soc. Photo-Opt. Instrum. Eng. 976, 2 (1988).

Holtzman, J. C.

V. S. Frost, J. A. Stiles, K. S. Shanmugan, J. C. Holtzman, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4, 157 (1982).
[CrossRef]

Jain, A. K.

A. K. Jain, C. R. Christensen, Proc. Soc. Photo-Opt. Instrum. Eng. 243, 46 (1980).

Jiang, S. S.

Lee, J. S.

J. S. Lee, Opt. Eng. 25, 636 (1986).

J. S. Lee, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-2, 165 (1980).
[CrossRef]

Perbos, J. R.

J. M. Durand, B. J. Gimonet, J. R. Perbos, IEEE Trans. Geosci. Remote Sensing GE-25, 629 (1987).
[CrossRef]

Sawchuk, A. A.

Shanmugan, K. S.

V. S. Frost, J. A. Stiles, K. S. Shanmugan, J. C. Holtzman, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4, 157 (1982).
[CrossRef]

Stiles, J. A.

V. S. Frost, J. A. Stiles, K. S. Shanmugan, J. C. Holtzman, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4, 157 (1982).
[CrossRef]

Appl. Opt.

IEEE Trans. Geosci. Remote Sensing

J. M. Durand, B. J. Gimonet, J. R. Perbos, IEEE Trans. Geosci. Remote Sensing GE-25, 629 (1987).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell.

V. S. Frost, J. A. Stiles, K. S. Shanmugan, J. C. Holtzman, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4, 157 (1982).
[CrossRef]

J. S. Lee, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-2, 165 (1980).
[CrossRef]

J. Opt. Soc. Am.

Opt. Eng.

J. S. Lee, Opt. Eng. 25, 636 (1986).

Proc. Soc. Photo-Opt. Instrum. Eng.

G. V. April, E. R. Harvey, Proc. Soc. Photo-Opt. Instrum. Eng. 976, 2 (1988).

A. K. Jain, C. R. Christensen, Proc. Soc. Photo-Opt. Instrum. Eng. 243, 46 (1980).

Other

J. W. Goodman, in Laser Speckle and Related Phenomena, J. C. Dainty, ed., Vol. 9 of Topics in Applied Physics (Springer-Verlag, New York, 1975), pp. 9–75.
[CrossRef]

B. R. Frieden, Probability, Statistical Optics and Data Testing (Springer-Verlag, New York, 1983).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Logarithmic four-look Seasat SAR image noise characteristics.

Fig. 2
Fig. 2

Comparison of processing algorithms on Seasat SAR four-look imagery, (a) Original image, (b) averaging filter over a 7 × 7 running window, (c) LLMMSE filter for multiplicative noise (intensity domain), (d) LLMMSE filter for additive noise (log-transformed intensity domain).

Fig. 3
Fig. 3

Comparison of processing algorithms on Seasat SAR four-look imagery, (a) Original image, (b) averaging filter over a 7 × 7 running window, (c) LLMMSE filter for multiplicative noise (intensity domain), (d) LLMMSE filter for additive noise (log-transformed intensity domain).

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = | { [ r ( x , y ) ] 1 / 2 exp [ j ϕ ( x , y ) ] } * h ( x , y ) | 2 ,
I ( i , j ) = r ( i , j ) n ( i , j ) ,
σ n = ( 1 M ) 1 / 2 [ 1 + 2 c ( M 1 ) M ] 1 / 2 ,
r ( i , j ) = I ω + [ 1 ( I ω σ I ω ) σ n 2 1 + σ n 2 ] [ I ( i , j ) I ω ] ,
J ( i , j ) = s ( i , j ) + b ( i , j ) ,
s ( i , j ) = ( J ω b ) + ( 1 σ b 2 σ J ω 2 ) [ J ( i , j ) J ω ] ,
I = i = 1 4 I i = i = 1 4 | A i | 2 ,
[ R A A ] = 1 4 [ 1 μ 0 0 μ * 1 μ 0 0 μ * 1 μ 0 0 μ * 1 ] .
λ = 1 4 { 1 ± [ ( 3 ± 5 2 ) | μ | 2 ] 1 / 2 } ,
P n ( n ) = i = 1 4 d i λ i exp ( n λ i ) ,
d i = j = 1 j i 4 ( 1 λ j λ i ) 1 .
σ n = ( i = 1 4 λ i 2 ) 1 / 2 = 2 ( 1 + 1 . 5 c ) 1 / 2 .
P b ( b ) = i = 1 4 d i { exp ( b b i ) exp [ exp ( b b i ) ] } .
b = i = 1 4 d i ( ln λ i ) g ,
σ b 2 = π 2 6 [ ( i = 1 4 d i ln λ i ) 2 i = 1 4 d i ( ln λ i ) 2 ] .

Metrics