Abstract

A new technique is proposed and demonstrated for improving the resolution of the delayed self-heterodyne method for laser spectral linewidth measurement. The delay time between two laser beams is increased by the use of multipass transmission in an optical fiber ring interferometer containing a frequency shifter. This technique does not require a longer fiber or complicated curve fitting of the observed spectra.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Okoshi, K. Kikuchi, A. Nakayama, Electron. Lett. 16, 630 (1980).
    [Crossref]
  2. T. Okoshi, K. Kikuchi, in Coherent Optical Fiber Communications (KTK Scientific, Tokyo, 1988), p. 86.
  3. H. Tsuchida, in Proceedings of Third Meeting on Lightwave Sensing Technology (Lightwave Sensing Technology Research Group, Japan Society of Applied Physics, Tokyo, 1989), p. 77.
  4. B. Dahmani, L. Hollberg, R. Drullinger, Opt. Lett. 12, 876 (1987).
    [Crossref] [PubMed]
  5. P. Laurent, A. Clairon, C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
    [Crossref]
  6. L. E. Richter, H. I. Mandelberg, M. S. Kruger, P. A. McGrath, IEEE J. Quantum Electron. QE-22, 2070 (1986).
    [Crossref]
  7. Santec acousto-optic frequency shifter module model i-50-155.
  8. W. P. Risk, G. S. Kino, H. J. Shaw, Opt. Lett. 11, 115 (1986).
    [Crossref] [PubMed]

1989 (1)

P. Laurent, A. Clairon, C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
[Crossref]

1987 (1)

1986 (2)

L. E. Richter, H. I. Mandelberg, M. S. Kruger, P. A. McGrath, IEEE J. Quantum Electron. QE-22, 2070 (1986).
[Crossref]

W. P. Risk, G. S. Kino, H. J. Shaw, Opt. Lett. 11, 115 (1986).
[Crossref] [PubMed]

1980 (1)

T. Okoshi, K. Kikuchi, A. Nakayama, Electron. Lett. 16, 630 (1980).
[Crossref]

Breant, C.

P. Laurent, A. Clairon, C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
[Crossref]

Clairon, A.

P. Laurent, A. Clairon, C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
[Crossref]

Dahmani, B.

Drullinger, R.

Hollberg, L.

Kikuchi, K.

T. Okoshi, K. Kikuchi, A. Nakayama, Electron. Lett. 16, 630 (1980).
[Crossref]

T. Okoshi, K. Kikuchi, in Coherent Optical Fiber Communications (KTK Scientific, Tokyo, 1988), p. 86.

Kino, G. S.

Kruger, M. S.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, P. A. McGrath, IEEE J. Quantum Electron. QE-22, 2070 (1986).
[Crossref]

Laurent, P.

P. Laurent, A. Clairon, C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
[Crossref]

Mandelberg, H. I.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, P. A. McGrath, IEEE J. Quantum Electron. QE-22, 2070 (1986).
[Crossref]

McGrath, P. A.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, P. A. McGrath, IEEE J. Quantum Electron. QE-22, 2070 (1986).
[Crossref]

Nakayama, A.

T. Okoshi, K. Kikuchi, A. Nakayama, Electron. Lett. 16, 630 (1980).
[Crossref]

Okoshi, T.

T. Okoshi, K. Kikuchi, A. Nakayama, Electron. Lett. 16, 630 (1980).
[Crossref]

T. Okoshi, K. Kikuchi, in Coherent Optical Fiber Communications (KTK Scientific, Tokyo, 1988), p. 86.

Richter, L. E.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, P. A. McGrath, IEEE J. Quantum Electron. QE-22, 2070 (1986).
[Crossref]

Risk, W. P.

Shaw, H. J.

Tsuchida, H.

H. Tsuchida, in Proceedings of Third Meeting on Lightwave Sensing Technology (Lightwave Sensing Technology Research Group, Japan Society of Applied Physics, Tokyo, 1989), p. 77.

Electron. Lett. (1)

T. Okoshi, K. Kikuchi, A. Nakayama, Electron. Lett. 16, 630 (1980).
[Crossref]

IEEE J. Quantum Electron. (2)

P. Laurent, A. Clairon, C. Breant, IEEE J. Quantum Electron. 25, 1131 (1989).
[Crossref]

L. E. Richter, H. I. Mandelberg, M. S. Kruger, P. A. McGrath, IEEE J. Quantum Electron. QE-22, 2070 (1986).
[Crossref]

Opt. Lett. (2)

Other (3)

Santec acousto-optic frequency shifter module model i-50-155.

T. Okoshi, K. Kikuchi, in Coherent Optical Fiber Communications (KTK Scientific, Tokyo, 1988), p. 86.

H. Tsuchida, in Proceedings of Third Meeting on Lightwave Sensing Technology (Lightwave Sensing Technology Research Group, Japan Society of Applied Physics, Tokyo, 1989), p. 77.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diagram of the setups for (a) the conventional DSHM and (b) the proposed technique, where ωs and τd represent the frequency shift and delay time, respectively.

Fig. 2
Fig. 2

Self-heterodyne beat spectra displayed on the spectrum analyzer with a resolution bandwidth of 3 MHz. S1, S2, and S3 are the first-, second-, and third-order beat spectra, respectively.

Fig. 3
Fig. 3

First- and second-order beat spectra S1 and S2 observed with the spectrum analyzer bandwidth of 100 kHz, where f represents the Fourier frequency.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E in ( t ) = A exp { i [ ω 0 t + ϕ ( t ) ] } ,
I out ( t ) = I dc + n = 1 I n ( t ) ,
I n ( t ) = A 2 k = 0 ( α / 2 ) k + n / 2 cos { n ω s t n ω 0 τ d + ϕ [ t ( k + n ) τ d ] ϕ ( t k τ d ) } ,
I n ( t ) = A 2 ( α / 2 ) n / 2 cos [ n ω s t n ω 0 τ d + ϕ ( t n τ d ) ϕ ( t ) ] .
S n ( ω ) = ( α / 2 ) n ( Δ ω / π ) [ Δ ω 2 + ( ω n ω s ) 2 ] ,

Metrics