Abstract

We demonstrate specular reflection for laser-cooled atoms dropped onto a gradient-light-force mirror. Transit times of 264 msec are observed for atoms dropped from a height of ~2.0 cm and bouncing twice on the evanescent wave before being detected. Of the ~107 atoms initially dropped, ~3 × 103 are detected after 264 msec.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Cook, R. K. Hill, Opt. Commun. 43, 258 (1982).
    [CrossRef]
  2. V. I. Balykin, V. S. Letokhov, Yu. B. Ovchinnikov, A. I. Sidorov, JETP Lett. 45, 282 (1987).
  3. V. I. Balykin, V. S. Letokhov, Yu. B. Ovchinnikov, A. I. Sidorov, Phys. Rev. Lett. 60, 2137 (1988).
    [CrossRef] [PubMed]
  4. S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
    [CrossRef] [PubMed]
  5. P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, H. J. Metcalf, Phys. Rev. Lett. 61, 169 (1988). Explanations of this cooling process are in J. Dalibard, C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989) and P. J. Ungar, D. S. Weiss, E. Riis, S. Chu, J. Opt. Soc. Am. B 6, 2058 (1989).
    [CrossRef] [PubMed]
  6. See, e.g., J. P. Gordon, A. Ashkin, Phys. Rev. A 21, 1606 (1980).
    [CrossRef]
  7. E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
    [CrossRef] [PubMed]
  8. M. A. Kasevich, E. Riis, R. G. DeVoe, S. Chu, Phys. Rev. Lett. 63, 612 (1989).
    [CrossRef] [PubMed]
  9. Y. Shevy, D. S. Weiss, S. Chu, in Proceedings of Conference on Spin Polarized Quantum Systems (World Scientific, Singapore, 1989), p. 287.
  10. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  11. N. F. Ramsey, Molecular Beams (Oxford U. Press, London, 1956).
  12. M. A. Player, P. H. Sandars, J. Phys. B 3, 1620 (1970).
    [CrossRef]
  13. K. Shimoda, IEEE Trans. Instrum. Meas. 38, 150 (1989).
    [CrossRef]

1989 (2)

M. A. Kasevich, E. Riis, R. G. DeVoe, S. Chu, Phys. Rev. Lett. 63, 612 (1989).
[CrossRef] [PubMed]

K. Shimoda, IEEE Trans. Instrum. Meas. 38, 150 (1989).
[CrossRef]

1988 (2)

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, H. J. Metcalf, Phys. Rev. Lett. 61, 169 (1988). Explanations of this cooling process are in J. Dalibard, C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989) and P. J. Ungar, D. S. Weiss, E. Riis, S. Chu, J. Opt. Soc. Am. B 6, 2058 (1989).
[CrossRef] [PubMed]

V. I. Balykin, V. S. Letokhov, Yu. B. Ovchinnikov, A. I. Sidorov, Phys. Rev. Lett. 60, 2137 (1988).
[CrossRef] [PubMed]

1987 (2)

V. I. Balykin, V. S. Letokhov, Yu. B. Ovchinnikov, A. I. Sidorov, JETP Lett. 45, 282 (1987).

E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

1985 (1)

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

1982 (1)

R. J. Cook, R. K. Hill, Opt. Commun. 43, 258 (1982).
[CrossRef]

1980 (1)

See, e.g., J. P. Gordon, A. Ashkin, Phys. Rev. A 21, 1606 (1980).
[CrossRef]

1970 (1)

M. A. Player, P. H. Sandars, J. Phys. B 3, 1620 (1970).
[CrossRef]

Ashkin, A.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

See, e.g., J. P. Gordon, A. Ashkin, Phys. Rev. A 21, 1606 (1980).
[CrossRef]

Balykin, V. I.

V. I. Balykin, V. S. Letokhov, Yu. B. Ovchinnikov, A. I. Sidorov, Phys. Rev. Lett. 60, 2137 (1988).
[CrossRef] [PubMed]

V. I. Balykin, V. S. Letokhov, Yu. B. Ovchinnikov, A. I. Sidorov, JETP Lett. 45, 282 (1987).

Bjorkholm, J. E.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

Cable, A.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

Chu, S.

M. A. Kasevich, E. Riis, R. G. DeVoe, S. Chu, Phys. Rev. Lett. 63, 612 (1989).
[CrossRef] [PubMed]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

Y. Shevy, D. S. Weiss, S. Chu, in Proceedings of Conference on Spin Polarized Quantum Systems (World Scientific, Singapore, 1989), p. 287.

Cook, R. J.

R. J. Cook, R. K. Hill, Opt. Commun. 43, 258 (1982).
[CrossRef]

DeVoe, R. G.

M. A. Kasevich, E. Riis, R. G. DeVoe, S. Chu, Phys. Rev. Lett. 63, 612 (1989).
[CrossRef] [PubMed]

Gordon, J. P.

See, e.g., J. P. Gordon, A. Ashkin, Phys. Rev. A 21, 1606 (1980).
[CrossRef]

Gould, P. L.

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, H. J. Metcalf, Phys. Rev. Lett. 61, 169 (1988). Explanations of this cooling process are in J. Dalibard, C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989) and P. J. Ungar, D. S. Weiss, E. Riis, S. Chu, J. Opt. Soc. Am. B 6, 2058 (1989).
[CrossRef] [PubMed]

Hill, R. K.

R. J. Cook, R. K. Hill, Opt. Commun. 43, 258 (1982).
[CrossRef]

Hollberg, L.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

Kasevich, M. A.

M. A. Kasevich, E. Riis, R. G. DeVoe, S. Chu, Phys. Rev. Lett. 63, 612 (1989).
[CrossRef] [PubMed]

Letokhov, V. S.

V. I. Balykin, V. S. Letokhov, Yu. B. Ovchinnikov, A. I. Sidorov, Phys. Rev. Lett. 60, 2137 (1988).
[CrossRef] [PubMed]

V. I. Balykin, V. S. Letokhov, Yu. B. Ovchinnikov, A. I. Sidorov, JETP Lett. 45, 282 (1987).

Lett, P. D.

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, H. J. Metcalf, Phys. Rev. Lett. 61, 169 (1988). Explanations of this cooling process are in J. Dalibard, C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989) and P. J. Ungar, D. S. Weiss, E. Riis, S. Chu, J. Opt. Soc. Am. B 6, 2058 (1989).
[CrossRef] [PubMed]

Metcalf, H. J.

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, H. J. Metcalf, Phys. Rev. Lett. 61, 169 (1988). Explanations of this cooling process are in J. Dalibard, C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989) and P. J. Ungar, D. S. Weiss, E. Riis, S. Chu, J. Opt. Soc. Am. B 6, 2058 (1989).
[CrossRef] [PubMed]

Ovchinnikov, Yu. B.

V. I. Balykin, V. S. Letokhov, Yu. B. Ovchinnikov, A. I. Sidorov, Phys. Rev. Lett. 60, 2137 (1988).
[CrossRef] [PubMed]

V. I. Balykin, V. S. Letokhov, Yu. B. Ovchinnikov, A. I. Sidorov, JETP Lett. 45, 282 (1987).

Phillips, W. D.

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, H. J. Metcalf, Phys. Rev. Lett. 61, 169 (1988). Explanations of this cooling process are in J. Dalibard, C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989) and P. J. Ungar, D. S. Weiss, E. Riis, S. Chu, J. Opt. Soc. Am. B 6, 2058 (1989).
[CrossRef] [PubMed]

Player, M. A.

M. A. Player, P. H. Sandars, J. Phys. B 3, 1620 (1970).
[CrossRef]

Prentiss, M.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Pritchard, D. E.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Raab, E. L.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

Ramsey, N. F.

N. F. Ramsey, Molecular Beams (Oxford U. Press, London, 1956).

Riis, E.

M. A. Kasevich, E. Riis, R. G. DeVoe, S. Chu, Phys. Rev. Lett. 63, 612 (1989).
[CrossRef] [PubMed]

Sandars, P. H.

M. A. Player, P. H. Sandars, J. Phys. B 3, 1620 (1970).
[CrossRef]

Shevy, Y.

Y. Shevy, D. S. Weiss, S. Chu, in Proceedings of Conference on Spin Polarized Quantum Systems (World Scientific, Singapore, 1989), p. 287.

Shimoda, K.

K. Shimoda, IEEE Trans. Instrum. Meas. 38, 150 (1989).
[CrossRef]

Sidorov, A. I.

V. I. Balykin, V. S. Letokhov, Yu. B. Ovchinnikov, A. I. Sidorov, Phys. Rev. Lett. 60, 2137 (1988).
[CrossRef] [PubMed]

V. I. Balykin, V. S. Letokhov, Yu. B. Ovchinnikov, A. I. Sidorov, JETP Lett. 45, 282 (1987).

Watts, R. N.

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, H. J. Metcalf, Phys. Rev. Lett. 61, 169 (1988). Explanations of this cooling process are in J. Dalibard, C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989) and P. J. Ungar, D. S. Weiss, E. Riis, S. Chu, J. Opt. Soc. Am. B 6, 2058 (1989).
[CrossRef] [PubMed]

Weiss, D. S.

Y. Shevy, D. S. Weiss, S. Chu, in Proceedings of Conference on Spin Polarized Quantum Systems (World Scientific, Singapore, 1989), p. 287.

Westbrook, C. I.

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, H. J. Metcalf, Phys. Rev. Lett. 61, 169 (1988). Explanations of this cooling process are in J. Dalibard, C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989) and P. J. Ungar, D. S. Weiss, E. Riis, S. Chu, J. Opt. Soc. Am. B 6, 2058 (1989).
[CrossRef] [PubMed]

IEEE Trans. Instrum. Meas. (1)

K. Shimoda, IEEE Trans. Instrum. Meas. 38, 150 (1989).
[CrossRef]

J. Phys. B (1)

M. A. Player, P. H. Sandars, J. Phys. B 3, 1620 (1970).
[CrossRef]

JETP Lett. (1)

V. I. Balykin, V. S. Letokhov, Yu. B. Ovchinnikov, A. I. Sidorov, JETP Lett. 45, 282 (1987).

Opt. Commun. (1)

R. J. Cook, R. K. Hill, Opt. Commun. 43, 258 (1982).
[CrossRef]

Phys. Rev. A (1)

See, e.g., J. P. Gordon, A. Ashkin, Phys. Rev. A 21, 1606 (1980).
[CrossRef]

Phys. Rev. Lett. (5)

E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987).
[CrossRef] [PubMed]

M. A. Kasevich, E. Riis, R. G. DeVoe, S. Chu, Phys. Rev. Lett. 63, 612 (1989).
[CrossRef] [PubMed]

V. I. Balykin, V. S. Letokhov, Yu. B. Ovchinnikov, A. I. Sidorov, Phys. Rev. Lett. 60, 2137 (1988).
[CrossRef] [PubMed]

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, H. J. Metcalf, Phys. Rev. Lett. 61, 169 (1988). Explanations of this cooling process are in J. Dalibard, C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989) and P. J. Ungar, D. S. Weiss, E. Riis, S. Chu, J. Opt. Soc. Am. B 6, 2058 (1989).
[CrossRef] [PubMed]

Other (3)

Y. Shevy, D. S. Weiss, S. Chu, in Proceedings of Conference on Spin Polarized Quantum Systems (World Scientific, Singapore, 1989), p. 287.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

N. F. Ramsey, Molecular Beams (Oxford U. Press, London, 1956).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Six molasses beams and a spherical quadrupole magnetic field initially trap ~107 atoms 2.0 cm above a Dove prism. By turning off the dc magnetic field, and shortly thereafter the molasses beams, a ball of cold atoms is dropped onto an evanescent .light field at the Dove prism surface. Atoms that bounce are detected by retrapping them when they return to the trapping region.

Fig. 2
Fig. 2

(a) Scan of fluorescence versus the delay time for the trampoline pulse, with a pulse intensity of 8.9 W/cm2, a pulse width of 5 msec, a detection time of 124 msec, and a detuning of 400 MHz. Approximately 3 × 104 atoms are detected at the signal peak. The signal-to-noise ratio was ~8:1 at the signal peak before the data were numerically smoothed. (b) Scan of fluorescence versus the delay time for a second, 20-msec-wide, trampoline pulse. The first pulse is fixed 62 msec after release, with a 10-msec width, and atoms are detected at 264 msec. The trampoline beam intensity was 8.9 W/cm2 at a 385-MHz detuning; ~3 × 103 atoms are detected at the signal peak. The signal-to-noise ratio was ~2.5:1 at the signal peak before the data were numerically smoothed.

Fig. 3
Fig. 3

Scan of fluorescence versus the laser detuning. The trampoline pulse intensity is 7.8 W/cm2 [curve (a)] and 4.6 W/cm2 [curve (b)]. The trampoline pulse delay is fixed at 62 msec, with a 10-msec width, and atoms are detected 124 msec after being dropped. The signal-to-noise ratio is comparable with that for Fig. 2(a).

Metrics