Abstract

We have constructed a correlation microscope based on the Mirau interferometer configuration using a thin silicon nitride film beam splitter, and we have developed a method to extract the amplitude and phase information of the reflected signal from a sample located at the microscope object plane. An imaging theory for the interference microscope has been derived, which predicts accurately both the transverse response at a sharp edge and the range response to a perfect plane reflector.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. S. C. Chim, P. A. Beck, G. S. Kino, Rev. Sci. Instrum. 61, 980 (1990).
    [CrossRef]
  2. M. Davidson, K. Kaufman, I. Mazor, F. Cohen, Proc. Soc. Photo-Opt. Instrum. Eng. 775, 233 (1987).
  3. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).
  4. P. C. D. Hobbs, G. S. Kino, “Generalizing the confocal microscope via heterodyne interferometry and digital filtering,” submitted to J. Microsc.
    [PubMed]

1990 (1)

S. S. C. Chim, P. A. Beck, G. S. Kino, Rev. Sci. Instrum. 61, 980 (1990).
[CrossRef]

1987 (1)

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, Proc. Soc. Photo-Opt. Instrum. Eng. 775, 233 (1987).

Beck, P. A.

S. S. C. Chim, P. A. Beck, G. S. Kino, Rev. Sci. Instrum. 61, 980 (1990).
[CrossRef]

Chim, S. S. C.

S. S. C. Chim, P. A. Beck, G. S. Kino, Rev. Sci. Instrum. 61, 980 (1990).
[CrossRef]

Cohen, F.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, Proc. Soc. Photo-Opt. Instrum. Eng. 775, 233 (1987).

Davidson, M.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, Proc. Soc. Photo-Opt. Instrum. Eng. 775, 233 (1987).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

Hobbs, P. C. D.

P. C. D. Hobbs, G. S. Kino, “Generalizing the confocal microscope via heterodyne interferometry and digital filtering,” submitted to J. Microsc.
[PubMed]

Kaufman, K.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, Proc. Soc. Photo-Opt. Instrum. Eng. 775, 233 (1987).

Kino, G. S.

S. S. C. Chim, P. A. Beck, G. S. Kino, Rev. Sci. Instrum. 61, 980 (1990).
[CrossRef]

P. C. D. Hobbs, G. S. Kino, “Generalizing the confocal microscope via heterodyne interferometry and digital filtering,” submitted to J. Microsc.
[PubMed]

Mazor, I.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, Proc. Soc. Photo-Opt. Instrum. Eng. 775, 233 (1987).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, Proc. Soc. Photo-Opt. Instrum. Eng. 775, 233 (1987).

Rev. Sci. Instrum. (1)

S. S. C. Chim, P. A. Beck, G. S. Kino, Rev. Sci. Instrum. 61, 980 (1990).
[CrossRef]

Other (2)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

P. C. D. Hobbs, G. S. Kino, “Generalizing the confocal microscope via heterodyne interferometry and digital filtering,” submitted to J. Microsc.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the Mirau correlation microscope.

Fig. 2
Fig. 2

Processing of data with the Fourier transform. (a) The microscope amplitude response when a reflector is scanned axially through its focal plane. The solid curves are experimental results, and the dashed curves are theoretical results. (b) Fourier transforms of the data in the spatial frequency domain. (c) Filtering in the spatial frequency domain. (d) The microscope intensity response when a reflector is scanned axially through its focal plane after inverse Fourier transforming the data to the space domain.

Fig. 3
Fig. 3

Intensity line scan over a cleaved silicon edge, and the same line scan sharpened by a modified Wiener filter.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

U ( k x , k y ) = u ( x , y ) exp [ j ( k x x + j k y y ) ] d x d y .
U S ( k x , k y ) = AU ( k x , k y ) exp ( 2 j k z z ) .
U R ( k x , k y ) = BU ( k x , k y ) ,
I ( z ) = 2 π | U | 2 0 θ 0 [ A 2 + B 2 + 2 AB cos ( 2 kz cos θ ) ] × sin θ cos θ ,
I AB ( z ) = 4 πAB | U | 2 bandwidth 0 θ 0 [ cos ( 2 kz cos θ ) × sin θ cos θ d θ ] F ( k ) d k .
u R ( x i , y i ) = h ( x x i , y y i ) u R ( x , y ) d x d y ,
u S ( x i , y i ) = h ( x x i , y y i ) u S ( x , y ) d x d y ,
I AB ( x i , y i ) = 2 AB | h ( x x i , y y i ) | 2 d x d y .
h ( r ) = J 1 ( 2 πr sin θ 0 / λ ) πr sin θ 0 / λ .

Metrics