Abstract

We describe a new single-laser, two-step fluorecence technique for detecting atomic hydrogen and demonstrate its application to flame measurements. This method provides the advantages of a previously demonstrated two-step method (two-photon 243-nm n = 1 → n = 2 excitation and subsequent single-photon 656-nm n = 2 → n = 3 excitation, by using two beams produced with two dye lasers) but with a much simpler experimental implementation (two-photon 243-nm n = 1 → n = 2 excitation and subsequent single-photon 486-nm n = 2 → 4 excitation, by using the fundamental and frequency-doubled beams from a single 486-nm dye laser).

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. M. Goldsmith, Opt. Lett. 10, 116 (1985).
    [CrossRef] [PubMed]
  2. J. E. M. Goldsmith, in Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1989), pp. 1403-1411.
    [CrossRef]
  3. J. E. M. Goldsmith, in Process Diagnostics: Materials, Combustion, Fusion, Vol. 117 of Materials Research Society Symposium Proceedings, A. K. Hays, A. C. Eckbreth, G. A. Campbell, eds. (Materials Research Society, Pittsburgh, Pa., 1988), pp. 193–201.
  4. R. P. Lucht, J. T. Salmon, G. B. King, D. W. Sweeney, N. M. Laurendeau, Opt. Lett. 8, 365 (1983).
    [CrossRef] [PubMed]
  5. M. Aldén, A. L. Schawlow, S. Svanberg, W. Wendt, P.-L. Zhang, Opt. Lett. 9, 211 (1984).
    [CrossRef] [PubMed]
  6. J. T. Salmon, Ph.D. dissertation (Purdue University, West Lafayette, Ind., 1986), pp. 153–154.
  7. S. A. Lee, R. Wallenstein, T. W. Hänsch, Phys. Rev. Lett. 35, 1262 (1975); C. Wieman, T. W. Hänsch, Phys. Rev. A 22, 192 (1980).
    [CrossRef]
  8. G. W. Erickson, J. Phys. Chem. Ref. Data 6, 831 (1977).
    [CrossRef]
  9. J. E. M. Goldsmith, Appl. Opt. 28, 1206 (1989).
    [CrossRef] [PubMed]
  10. J. W. Daily, Appl. Opt. 17, 225 (1979).
    [CrossRef]
  11. J. T. Salmon, N. M. Laurendeau, Appl. Opt. 26, 2881 (1987).
    [CrossRef] [PubMed]
  12. J. E. M. Goldsmith, D. T. Biernacki Kearsley, “C2 creation, emission, and laser-induced fluorescence in flames and cold gases,” Appl. Phys. B (to be published).
  13. J. E. M. Goldsmith, Opt. Lett. 11, 416 (1985).
    [CrossRef]

1989 (1)

1987 (1)

1985 (2)

1984 (1)

1983 (1)

1979 (1)

1977 (1)

G. W. Erickson, J. Phys. Chem. Ref. Data 6, 831 (1977).
[CrossRef]

1975 (1)

S. A. Lee, R. Wallenstein, T. W. Hänsch, Phys. Rev. Lett. 35, 1262 (1975); C. Wieman, T. W. Hänsch, Phys. Rev. A 22, 192 (1980).
[CrossRef]

Aldén, M.

Biernacki Kearsley, D. T.

J. E. M. Goldsmith, D. T. Biernacki Kearsley, “C2 creation, emission, and laser-induced fluorescence in flames and cold gases,” Appl. Phys. B (to be published).

Daily, J. W.

Erickson, G. W.

G. W. Erickson, J. Phys. Chem. Ref. Data 6, 831 (1977).
[CrossRef]

Goldsmith, J. E. M.

J. E. M. Goldsmith, Appl. Opt. 28, 1206 (1989).
[CrossRef] [PubMed]

J. E. M. Goldsmith, Opt. Lett. 11, 416 (1985).
[CrossRef]

J. E. M. Goldsmith, Opt. Lett. 10, 116 (1985).
[CrossRef] [PubMed]

J. E. M. Goldsmith, in Process Diagnostics: Materials, Combustion, Fusion, Vol. 117 of Materials Research Society Symposium Proceedings, A. K. Hays, A. C. Eckbreth, G. A. Campbell, eds. (Materials Research Society, Pittsburgh, Pa., 1988), pp. 193–201.

J. E. M. Goldsmith, in Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1989), pp. 1403-1411.
[CrossRef]

J. E. M. Goldsmith, D. T. Biernacki Kearsley, “C2 creation, emission, and laser-induced fluorescence in flames and cold gases,” Appl. Phys. B (to be published).

Hänsch, T. W.

S. A. Lee, R. Wallenstein, T. W. Hänsch, Phys. Rev. Lett. 35, 1262 (1975); C. Wieman, T. W. Hänsch, Phys. Rev. A 22, 192 (1980).
[CrossRef]

King, G. B.

Laurendeau, N. M.

Lee, S. A.

S. A. Lee, R. Wallenstein, T. W. Hänsch, Phys. Rev. Lett. 35, 1262 (1975); C. Wieman, T. W. Hänsch, Phys. Rev. A 22, 192 (1980).
[CrossRef]

Lucht, R. P.

Salmon, J. T.

Schawlow, A. L.

Svanberg, S.

Sweeney, D. W.

Wallenstein, R.

S. A. Lee, R. Wallenstein, T. W. Hänsch, Phys. Rev. Lett. 35, 1262 (1975); C. Wieman, T. W. Hänsch, Phys. Rev. A 22, 192 (1980).
[CrossRef]

Wendt, W.

Zhang, P.-L.

Appl. Opt. (3)

J. Phys. Chem. Ref. Data (1)

G. W. Erickson, J. Phys. Chem. Ref. Data 6, 831 (1977).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

S. A. Lee, R. Wallenstein, T. W. Hänsch, Phys. Rev. Lett. 35, 1262 (1975); C. Wieman, T. W. Hänsch, Phys. Rev. A 22, 192 (1980).
[CrossRef]

Other (4)

J. E. M. Goldsmith, D. T. Biernacki Kearsley, “C2 creation, emission, and laser-induced fluorescence in flames and cold gases,” Appl. Phys. B (to be published).

J. E. M. Goldsmith, in Twenty-Second Symposium (International) on Combustion (Combustion Institute, Pittsburgh, Pa., 1989), pp. 1403-1411.
[CrossRef]

J. E. M. Goldsmith, in Process Diagnostics: Materials, Combustion, Fusion, Vol. 117 of Materials Research Society Symposium Proceedings, A. K. Hays, A. C. Eckbreth, G. A. Campbell, eds. (Materials Research Society, Pittsburgh, Pa., 1988), pp. 193–201.

J. T. Salmon, Ph.D. dissertation (Purdue University, West Lafayette, Ind., 1986), pp. 153–154.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Multiphoton-excited fluorescence techniques for detecting atomic hydrogen in flames.

Fig. 2
Fig. 2

Apparatus used for single-laser two-step fluorescence detection of atomic hydrogen in flames.

Fig. 3
Fig. 3

Log–log plot of the dependence of the two-step fluorescence signal on the 243-nm pulse energy recorded by using an energy of 0.2 μJ/pulse at 486 nm. The dashed curve has a slope of 2, representing an I2 intensity dependence.

Fig. 4
Fig. 4

Dependence of the two-step fluorescence signal on the 486-nm pulse energy recorded by using an energy of 600 μJ/pulse at 243 nm. The dashed curve represents a least-squares fit to a functional form representing saturation of the single-photon transition.

Fig. 5
Fig. 5

Relative fluorescence profiles measured by using two-laser (circles) and single-laser (triangles) two-step excitation in a lean (equivalence ratio 0.6), 72-Torr hydrogen–oxygen–argon flame, and the absolute profile (solid curve) calculated by using a flame model.

Metrics