Abstract

We describe a new single-laser, two-step fluorecence technique for detecting atomic hydrogen and demonstrate its application to flame measurements. This method provides the advantages of a previously demonstrated two-step method (two-photon 243-nm n = 1 → n = 2 excitation and subsequent single-photon 656-nm n = 2 → n = 3 excitation, by using two beams produced with two dye lasers) but with a much simpler experimental implementation (two-photon 243-nm n = 1 → n = 2 excitation and subsequent single-photon 486-nm n = 2 → 4 excitation, by using the fundamental and frequency-doubled beams from a single 486-nm dye laser).

© 1990 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription