Abstract

We propose a high-speed surface reconstruction from three-dimensional data through optical–digital hybrid processing. Surface images are currently reconstructed through digital processing, which takes a long time mainly because of the rotation and interpolation of the volume data. In the proposed system, slice images of three-dimensional volume data are optically rotated and interpolated. In principle, one surface image can be obtained in the video rate when we use the same number of sets of optical processors as slices to be processed. Furthermore, this system could lead to a hybrid three-dimensional simulator; most operations such as rotation, cutting, digging holes, and peeling skins are interactively achieved at the video speed. Fundamental experiments are described that confirm the effectiveness of this method.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Ohyama, S. Inoue, H. Haneishi, J. Tsujiuchi, T. Honda, Appl. Opt. 28, 5338 (1989).
    [CrossRef] [PubMed]
  2. S. M. Goldwasser, R. A. Raynolds, D. Talton, E. Walsh, Proc. Soc. Photo-Opt. Instrum. Eng. 671, 139 (1986).
  3. G. F Frieder, D. Gordon, R. A. Raynolds, IEEE Comput. Graph. Appl. 5, 52 (1985).
    [CrossRef]
  4. F. A. Jenkins, H. E. White, Fundamentals of Optics, 4th ed. ( McGraw-Hill, New York, 1981), Chap. 2, p. 26.
  5. G. T. Herman, Proc. Soc. Photo-Opt. Instrum. Eng. 671, 124 (1986).
  6. N. Ohyama, Y. Minami, A. Watanabe, J. Tsujiuchi, T. Honda, Opt. Commun. 61, 96 (1987).
    [CrossRef]

1989 (1)

1987 (1)

N. Ohyama, Y. Minami, A. Watanabe, J. Tsujiuchi, T. Honda, Opt. Commun. 61, 96 (1987).
[CrossRef]

1986 (2)

G. T. Herman, Proc. Soc. Photo-Opt. Instrum. Eng. 671, 124 (1986).

S. M. Goldwasser, R. A. Raynolds, D. Talton, E. Walsh, Proc. Soc. Photo-Opt. Instrum. Eng. 671, 139 (1986).

1985 (1)

G. F Frieder, D. Gordon, R. A. Raynolds, IEEE Comput. Graph. Appl. 5, 52 (1985).
[CrossRef]

Frieder, G. F

G. F Frieder, D. Gordon, R. A. Raynolds, IEEE Comput. Graph. Appl. 5, 52 (1985).
[CrossRef]

Goldwasser, S. M.

S. M. Goldwasser, R. A. Raynolds, D. Talton, E. Walsh, Proc. Soc. Photo-Opt. Instrum. Eng. 671, 139 (1986).

Gordon, D.

G. F Frieder, D. Gordon, R. A. Raynolds, IEEE Comput. Graph. Appl. 5, 52 (1985).
[CrossRef]

Haneishi, H.

Herman, G. T.

G. T. Herman, Proc. Soc. Photo-Opt. Instrum. Eng. 671, 124 (1986).

Honda, T.

N. Ohyama, S. Inoue, H. Haneishi, J. Tsujiuchi, T. Honda, Appl. Opt. 28, 5338 (1989).
[CrossRef] [PubMed]

N. Ohyama, Y. Minami, A. Watanabe, J. Tsujiuchi, T. Honda, Opt. Commun. 61, 96 (1987).
[CrossRef]

Inoue, S.

Jenkins, F. A.

F. A. Jenkins, H. E. White, Fundamentals of Optics, 4th ed. ( McGraw-Hill, New York, 1981), Chap. 2, p. 26.

Minami, Y.

N. Ohyama, Y. Minami, A. Watanabe, J. Tsujiuchi, T. Honda, Opt. Commun. 61, 96 (1987).
[CrossRef]

Ohyama, N.

N. Ohyama, S. Inoue, H. Haneishi, J. Tsujiuchi, T. Honda, Appl. Opt. 28, 5338 (1989).
[CrossRef] [PubMed]

N. Ohyama, Y. Minami, A. Watanabe, J. Tsujiuchi, T. Honda, Opt. Commun. 61, 96 (1987).
[CrossRef]

Raynolds, R. A.

S. M. Goldwasser, R. A. Raynolds, D. Talton, E. Walsh, Proc. Soc. Photo-Opt. Instrum. Eng. 671, 139 (1986).

G. F Frieder, D. Gordon, R. A. Raynolds, IEEE Comput. Graph. Appl. 5, 52 (1985).
[CrossRef]

Talton, D.

S. M. Goldwasser, R. A. Raynolds, D. Talton, E. Walsh, Proc. Soc. Photo-Opt. Instrum. Eng. 671, 139 (1986).

Tsujiuchi, J.

N. Ohyama, S. Inoue, H. Haneishi, J. Tsujiuchi, T. Honda, Appl. Opt. 28, 5338 (1989).
[CrossRef] [PubMed]

N. Ohyama, Y. Minami, A. Watanabe, J. Tsujiuchi, T. Honda, Opt. Commun. 61, 96 (1987).
[CrossRef]

Walsh, E.

S. M. Goldwasser, R. A. Raynolds, D. Talton, E. Walsh, Proc. Soc. Photo-Opt. Instrum. Eng. 671, 139 (1986).

Watanabe, A.

N. Ohyama, Y. Minami, A. Watanabe, J. Tsujiuchi, T. Honda, Opt. Commun. 61, 96 (1987).
[CrossRef]

White, H. E.

F. A. Jenkins, H. E. White, Fundamentals of Optics, 4th ed. ( McGraw-Hill, New York, 1981), Chap. 2, p. 26.

Appl. Opt. (1)

IEEE Comput. Graph. Appl. (1)

G. F Frieder, D. Gordon, R. A. Raynolds, IEEE Comput. Graph. Appl. 5, 52 (1985).
[CrossRef]

Opt. Commun. (1)

N. Ohyama, Y. Minami, A. Watanabe, J. Tsujiuchi, T. Honda, Opt. Commun. 61, 96 (1987).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

G. T. Herman, Proc. Soc. Photo-Opt. Instrum. Eng. 671, 124 (1986).

S. M. Goldwasser, R. A. Raynolds, D. Talton, E. Walsh, Proc. Soc. Photo-Opt. Instrum. Eng. 671, 139 (1986).

Other (1)

F. A. Jenkins, H. E. White, Fundamentals of Optics, 4th ed. ( McGraw-Hill, New York, 1981), Chap. 2, p. 26.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calculation of the surface image in one slice of a CT image set as observed from (A) the front of the object and (B) an oblique direction. (C) The surface image from an oblique direction obtained by the rotation of the slice image before parallel projection.

Fig. 2
Fig. 2

Image rotation optics with a Dove prism. As it is rotated about the optical axis, the image is rotated with twice the angular velocity of the prism.

Fig. 3
Fig. 3

Experimental system. The slice images are displayed on a CRT and taken by a tilted CCD camera. The postprocessing functions are executed in the computer. D/A, digital to analog; A/D, analog to digital.

Fig. 4
Fig. 4

Experimental results: (A) rotated skull surface image; (B) cutting of a part; (C), (D) zooming to the skull.

Fig. 5
Fig. 5

Conceptual diagram of the hybrid 3-D simulator. Every slice image is rotated by image rotation optics. The depth information from one rotated slice image is calculated along each column and shaded by 1-D signal processors, and one row of the surface image is produced.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A ( i ) = | D ( i ) D ( i 1 ) | .
S ( i ) = f d D ( i ) + f a A ( i ) ,

Metrics