Abstract

Recent experimental results on the radiation generated from an electron beam passing closely over a conducting grating are presented. The most striking results are that the output power is 4 orders of magnitude more intense than that predicted by the Smith–Purcell explanation and that the output power increases exponentially with the beam thickness until it saturates at a thickness of a 1000 times the grating period. The recent theoretical model of Chang and McDaniel [Phys. Rev. Lett. 63, 1066 (1989); J. Opt. Soc. Am. B 7, 239 (1990)] is shown to compare favorably with these results.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. W. Salisbury, U.S. patent2,634,372 (April7, 1953).
  2. S. J. Smith, E. M. Purcell, Phys. Rev. 92, 1069 (1953).
    [CrossRef]
  3. W. W. Salisbury, Tech. Documentary Rep. No. AFAL-TR-65-40 (VARO, Inc., Garland, Tex., 1965).
  4. W. W. Salisbury, Science 154, 386 (1966).
    [CrossRef] [PubMed]
  5. W. W. Salisbury, J. Opt. Soc. Am. 60, 1279 (1970).
    [CrossRef]
  6. J. P. Bachheimer, Phys. Rev. B 6, 2985 (1972); J. P. Bachheimer, J. L. Bret, C. R. Acad. Sci. Ser. B 266, 902 (1968); J. L. Bret, J. P. Bachheimer, C. R. Acad. Sci. Ser. B 269, 285 (1969).
    [CrossRef]
  7. E. L. Burdette, G. Hughes, Phys. Rev. A 14, 1766 (1976).
    [CrossRef]
  8. A. Gover, P. Dvorkis, V. Elisha, J. Opt. Soc. Am. B 1, 723 (1984).
    [CrossRef]
  9. D. B. Chang, J. C. McDaniel, J. Opt. Soc. Am. B 7, 239 (1990).
    [CrossRef]
  10. D. B. Chang, J. C. McDaniel, Phys. Rev. Lett. 63, 1066 (1989).
    [CrossRef] [PubMed]
  11. J. C. McDaniel, D. B. Chang, J. E. Drummond, W. W. Salisbury, Appl. Opt. 28, 4924 (1989).
    [CrossRef] [PubMed]
  12. I. Shih, W. W. Salisbury, D. L. Masters, D. B. Chang, J. Opt. Soc. Am. B 7, 345 (1990).
    [CrossRef]
  13. I. Shih, D. B. Chang, J. E. Drummond, K. L. Dubbs, D. L. Masters, R. M. Prohaska, W. W. Salisbury, J. Opt. Soc. Am. B 7, 351 (1990).
    [CrossRef]

1990 (3)

1989 (2)

1984 (1)

1976 (1)

E. L. Burdette, G. Hughes, Phys. Rev. A 14, 1766 (1976).
[CrossRef]

1972 (1)

J. P. Bachheimer, Phys. Rev. B 6, 2985 (1972); J. P. Bachheimer, J. L. Bret, C. R. Acad. Sci. Ser. B 266, 902 (1968); J. L. Bret, J. P. Bachheimer, C. R. Acad. Sci. Ser. B 269, 285 (1969).
[CrossRef]

1970 (1)

1966 (1)

W. W. Salisbury, Science 154, 386 (1966).
[CrossRef] [PubMed]

1953 (1)

S. J. Smith, E. M. Purcell, Phys. Rev. 92, 1069 (1953).
[CrossRef]

Bachheimer, J. P.

J. P. Bachheimer, Phys. Rev. B 6, 2985 (1972); J. P. Bachheimer, J. L. Bret, C. R. Acad. Sci. Ser. B 266, 902 (1968); J. L. Bret, J. P. Bachheimer, C. R. Acad. Sci. Ser. B 269, 285 (1969).
[CrossRef]

Burdette, E. L.

E. L. Burdette, G. Hughes, Phys. Rev. A 14, 1766 (1976).
[CrossRef]

Chang, D. B.

Drummond, J. E.

Dubbs, K. L.

Dvorkis, P.

Elisha, V.

Gover, A.

Hughes, G.

E. L. Burdette, G. Hughes, Phys. Rev. A 14, 1766 (1976).
[CrossRef]

Masters, D. L.

McDaniel, J. C.

Prohaska, R. M.

Purcell, E. M.

S. J. Smith, E. M. Purcell, Phys. Rev. 92, 1069 (1953).
[CrossRef]

Salisbury, W. W.

Shih, I.

Smith, S. J.

S. J. Smith, E. M. Purcell, Phys. Rev. 92, 1069 (1953).
[CrossRef]

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (4)

Phys. Rev. (1)

S. J. Smith, E. M. Purcell, Phys. Rev. 92, 1069 (1953).
[CrossRef]

Phys. Rev. A (1)

E. L. Burdette, G. Hughes, Phys. Rev. A 14, 1766 (1976).
[CrossRef]

Phys. Rev. B (1)

J. P. Bachheimer, Phys. Rev. B 6, 2985 (1972); J. P. Bachheimer, J. L. Bret, C. R. Acad. Sci. Ser. B 266, 902 (1968); J. L. Bret, J. P. Bachheimer, C. R. Acad. Sci. Ser. B 269, 285 (1969).
[CrossRef]

Phys. Rev. Lett. (1)

D. B. Chang, J. C. McDaniel, Phys. Rev. Lett. 63, 1066 (1989).
[CrossRef] [PubMed]

Science (1)

W. W. Salisbury, Science 154, 386 (1966).
[CrossRef] [PubMed]

Other (2)

W. W. Salisbury, U.S. patent2,634,372 (April7, 1953).

W. W. Salisbury, Tech. Documentary Rep. No. AFAL-TR-65-40 (VARO, Inc., Garland, Tex., 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Radiation measurement apparatus.

Fig. 2
Fig. 2

Scanning-electron-microscope photographs of a custom-made solid metal replica. Left: a perpendicular view. Right: viewed at a 70° tilt angle.

Fig. 3
Fig. 3

Radiation output versus the beam thickness for five sets of data. The data sets indicated by the open circles, filled circles, and crosses were taken at incident angles of 1.3, 2.6, and 3.9 mrad, respectively; the other two data sets were taken at unknown angles.

Fig. 4
Fig. 4

Comparison of experimental data with the prediction from the quantum-mechanical treatment (the solid curve).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ = a ( c υ cos θ ) ,
I = A exp [ ( x 0 / x ) 3 ] ,
x 0 = { 1 3 32 π 2 n g υ 0 4 e 2 α E w [ 2 mZ e 2 θ D ( N + 1 ) 3 2 ( 2 π a ) 2 ] 4 × [ R ( k 0 ) ] 6 θ D 2 a 6 ( N + 1 ) 10 ( sin θ + θ D cos θ ) 2 sin θ } 1 / 3 .

Metrics