Abstract

Hollow sapphire tubing has been used to deliver nearly single-mode CO2 laser energy. The hollow single-crystal Al2O3 fiber has an n < 1 cladding at 10.6 μm. Measured losses at 10.6 μm are as low as 0.49 dB/m, and the minimum bend radius of the 580 μm × 380 μm fiber is 14 cm. Bending losses are shown to vary as 1/R, and essentially only the HE11 mode propagates in the bent guide.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Katsuyama, H. Matsumura, Infrared Optical Fibers (Hilger, Philadelphia, Pa., 1989).
  2. T. Kanamori, Y. Terunuma, S. Takahashi, T. Miyashita, IEEE J. Lightwave Technol. LT-2, 607 (1984).
    [CrossRef]
  3. T. Hidaka, K. Kumada, J. Shimada, T. Morikawa, J. Appl. Phys. 53, 5484 (1982); T. Hidaka, T. Morikawa, J. Shimada, K. Kumata, U.S. patent4,453,803.
    [CrossRef]
  4. M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, J. Appl. Phys. 60, 454 (1986).
    [CrossRef]
  5. E. Garmire, T. McMahon, M. Bass, IEEE J. Quantum Electron. QE-16, 23 (1980).
    [CrossRef]
  6. R. Jenkins, R. Devereux, IEEE J. Quantum Electron. QE-21, 1722 (1985).
    [CrossRef]
  7. C. Worrell, Proc. Soc. Photo-Opt. Instrum. Eng. 843, 80 (1987).
  8. T. Matsushima, K. Tanaka, Y. Okuda, T. Sueta, Jpn. J. Appl. Phys. 27, 1357 (1988).
    [CrossRef]
  9. E. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985), p. 594; K. Laakmann, U.S. patent4,805,987.
  10. E. Marcatili, R. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).
  11. Saphikon Inc., Milford, N.H. 03055.
  12. M. Miyagi, K. Harada, Y. Aizawa, S. Kawakami, Proc. Soc. Photo-Opt. Instrum. Eng. 484, 117 (1984).
  13. S. Wilson, R. Jenkins, R. Devereux, IEEE J. Quantum Electron. QE-23, 52 (1987).
    [CrossRef]
  14. R. Jenkins, R. Devereux, IEEE J. Quantum Electron. QE-22, 718 (1986).
    [CrossRef]
  15. F. Roullard, M. Bass, IEEE J. Quantum Electron. QE-13, 813 (1977).
    [CrossRef]
  16. J. Harrington, C. Gregory, R. Nubling, Proc. Soc. Photo-Opt. Instrum. Eng. 1048, 117 (1989).
  17. A. Hongo, M. Miyagi, S. Karasawa, S. Nishida, Opt. Laser Technol. 19, 214 (1987).
    [CrossRef]

1989 (1)

J. Harrington, C. Gregory, R. Nubling, Proc. Soc. Photo-Opt. Instrum. Eng. 1048, 117 (1989).

1988 (1)

T. Matsushima, K. Tanaka, Y. Okuda, T. Sueta, Jpn. J. Appl. Phys. 27, 1357 (1988).
[CrossRef]

1987 (3)

C. Worrell, Proc. Soc. Photo-Opt. Instrum. Eng. 843, 80 (1987).

A. Hongo, M. Miyagi, S. Karasawa, S. Nishida, Opt. Laser Technol. 19, 214 (1987).
[CrossRef]

S. Wilson, R. Jenkins, R. Devereux, IEEE J. Quantum Electron. QE-23, 52 (1987).
[CrossRef]

1986 (2)

R. Jenkins, R. Devereux, IEEE J. Quantum Electron. QE-22, 718 (1986).
[CrossRef]

M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, J. Appl. Phys. 60, 454 (1986).
[CrossRef]

1985 (1)

R. Jenkins, R. Devereux, IEEE J. Quantum Electron. QE-21, 1722 (1985).
[CrossRef]

1984 (2)

T. Kanamori, Y. Terunuma, S. Takahashi, T. Miyashita, IEEE J. Lightwave Technol. LT-2, 607 (1984).
[CrossRef]

M. Miyagi, K. Harada, Y. Aizawa, S. Kawakami, Proc. Soc. Photo-Opt. Instrum. Eng. 484, 117 (1984).

1982 (1)

T. Hidaka, K. Kumada, J. Shimada, T. Morikawa, J. Appl. Phys. 53, 5484 (1982); T. Hidaka, T. Morikawa, J. Shimada, K. Kumata, U.S. patent4,453,803.
[CrossRef]

1980 (1)

E. Garmire, T. McMahon, M. Bass, IEEE J. Quantum Electron. QE-16, 23 (1980).
[CrossRef]

1977 (1)

F. Roullard, M. Bass, IEEE J. Quantum Electron. QE-13, 813 (1977).
[CrossRef]

1964 (1)

E. Marcatili, R. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Aizawa, Y.

M. Miyagi, K. Harada, Y. Aizawa, S. Kawakami, Proc. Soc. Photo-Opt. Instrum. Eng. 484, 117 (1984).

Bass, M.

E. Garmire, T. McMahon, M. Bass, IEEE J. Quantum Electron. QE-16, 23 (1980).
[CrossRef]

F. Roullard, M. Bass, IEEE J. Quantum Electron. QE-13, 813 (1977).
[CrossRef]

Devereux, R.

S. Wilson, R. Jenkins, R. Devereux, IEEE J. Quantum Electron. QE-23, 52 (1987).
[CrossRef]

R. Jenkins, R. Devereux, IEEE J. Quantum Electron. QE-22, 718 (1986).
[CrossRef]

R. Jenkins, R. Devereux, IEEE J. Quantum Electron. QE-21, 1722 (1985).
[CrossRef]

Garmire, E.

E. Garmire, T. McMahon, M. Bass, IEEE J. Quantum Electron. QE-16, 23 (1980).
[CrossRef]

Gregory, C.

J. Harrington, C. Gregory, R. Nubling, Proc. Soc. Photo-Opt. Instrum. Eng. 1048, 117 (1989).

Harada, K.

M. Miyagi, K. Harada, Y. Aizawa, S. Kawakami, Proc. Soc. Photo-Opt. Instrum. Eng. 484, 117 (1984).

Harrington, J.

J. Harrington, C. Gregory, R. Nubling, Proc. Soc. Photo-Opt. Instrum. Eng. 1048, 117 (1989).

Hidaka, T.

T. Hidaka, K. Kumada, J. Shimada, T. Morikawa, J. Appl. Phys. 53, 5484 (1982); T. Hidaka, T. Morikawa, J. Shimada, K. Kumata, U.S. patent4,453,803.
[CrossRef]

Hongo, A.

A. Hongo, M. Miyagi, S. Karasawa, S. Nishida, Opt. Laser Technol. 19, 214 (1987).
[CrossRef]

M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, J. Appl. Phys. 60, 454 (1986).
[CrossRef]

Jenkins, R.

S. Wilson, R. Jenkins, R. Devereux, IEEE J. Quantum Electron. QE-23, 52 (1987).
[CrossRef]

R. Jenkins, R. Devereux, IEEE J. Quantum Electron. QE-22, 718 (1986).
[CrossRef]

R. Jenkins, R. Devereux, IEEE J. Quantum Electron. QE-21, 1722 (1985).
[CrossRef]

Kanamori, T.

T. Kanamori, Y. Terunuma, S. Takahashi, T. Miyashita, IEEE J. Lightwave Technol. LT-2, 607 (1984).
[CrossRef]

Karasawa, S.

A. Hongo, M. Miyagi, S. Karasawa, S. Nishida, Opt. Laser Technol. 19, 214 (1987).
[CrossRef]

Katsuyama, T.

T. Katsuyama, H. Matsumura, Infrared Optical Fibers (Hilger, Philadelphia, Pa., 1989).

Kawakami, S.

M. Miyagi, K. Harada, Y. Aizawa, S. Kawakami, Proc. Soc. Photo-Opt. Instrum. Eng. 484, 117 (1984).

Kumada, K.

T. Hidaka, K. Kumada, J. Shimada, T. Morikawa, J. Appl. Phys. 53, 5484 (1982); T. Hidaka, T. Morikawa, J. Shimada, K. Kumata, U.S. patent4,453,803.
[CrossRef]

Marcatili, E.

E. Marcatili, R. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Matsumura, H.

T. Katsuyama, H. Matsumura, Infrared Optical Fibers (Hilger, Philadelphia, Pa., 1989).

Matsushima, T.

T. Matsushima, K. Tanaka, Y. Okuda, T. Sueta, Jpn. J. Appl. Phys. 27, 1357 (1988).
[CrossRef]

McMahon, T.

E. Garmire, T. McMahon, M. Bass, IEEE J. Quantum Electron. QE-16, 23 (1980).
[CrossRef]

Miyagi, M.

A. Hongo, M. Miyagi, S. Karasawa, S. Nishida, Opt. Laser Technol. 19, 214 (1987).
[CrossRef]

M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, J. Appl. Phys. 60, 454 (1986).
[CrossRef]

M. Miyagi, K. Harada, Y. Aizawa, S. Kawakami, Proc. Soc. Photo-Opt. Instrum. Eng. 484, 117 (1984).

Miyashita, T.

T. Kanamori, Y. Terunuma, S. Takahashi, T. Miyashita, IEEE J. Lightwave Technol. LT-2, 607 (1984).
[CrossRef]

Morikawa, T.

T. Hidaka, K. Kumada, J. Shimada, T. Morikawa, J. Appl. Phys. 53, 5484 (1982); T. Hidaka, T. Morikawa, J. Shimada, K. Kumata, U.S. patent4,453,803.
[CrossRef]

Nishida, S.

A. Hongo, M. Miyagi, S. Karasawa, S. Nishida, Opt. Laser Technol. 19, 214 (1987).
[CrossRef]

M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, J. Appl. Phys. 60, 454 (1986).
[CrossRef]

Nubling, R.

J. Harrington, C. Gregory, R. Nubling, Proc. Soc. Photo-Opt. Instrum. Eng. 1048, 117 (1989).

Okuda, Y.

T. Matsushima, K. Tanaka, Y. Okuda, T. Sueta, Jpn. J. Appl. Phys. 27, 1357 (1988).
[CrossRef]

Roullard, F.

F. Roullard, M. Bass, IEEE J. Quantum Electron. QE-13, 813 (1977).
[CrossRef]

Sakamoto, K.

M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, J. Appl. Phys. 60, 454 (1986).
[CrossRef]

Schmeltzer, R.

E. Marcatili, R. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

Shimada, J.

T. Hidaka, K. Kumada, J. Shimada, T. Morikawa, J. Appl. Phys. 53, 5484 (1982); T. Hidaka, T. Morikawa, J. Shimada, K. Kumata, U.S. patent4,453,803.
[CrossRef]

Shimada, Y.

M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, J. Appl. Phys. 60, 454 (1986).
[CrossRef]

Sueta, T.

T. Matsushima, K. Tanaka, Y. Okuda, T. Sueta, Jpn. J. Appl. Phys. 27, 1357 (1988).
[CrossRef]

Takahashi, S.

T. Kanamori, Y. Terunuma, S. Takahashi, T. Miyashita, IEEE J. Lightwave Technol. LT-2, 607 (1984).
[CrossRef]

Tanaka, K.

T. Matsushima, K. Tanaka, Y. Okuda, T. Sueta, Jpn. J. Appl. Phys. 27, 1357 (1988).
[CrossRef]

Terunuma, Y.

T. Kanamori, Y. Terunuma, S. Takahashi, T. Miyashita, IEEE J. Lightwave Technol. LT-2, 607 (1984).
[CrossRef]

Wilson, S.

S. Wilson, R. Jenkins, R. Devereux, IEEE J. Quantum Electron. QE-23, 52 (1987).
[CrossRef]

Worrell, C.

C. Worrell, Proc. Soc. Photo-Opt. Instrum. Eng. 843, 80 (1987).

Bell Syst. Tech. J. (1)

E. Marcatili, R. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964).

IEEE J. Lightwave Technol. (1)

T. Kanamori, Y. Terunuma, S. Takahashi, T. Miyashita, IEEE J. Lightwave Technol. LT-2, 607 (1984).
[CrossRef]

IEEE J. Quantum Electron. (5)

E. Garmire, T. McMahon, M. Bass, IEEE J. Quantum Electron. QE-16, 23 (1980).
[CrossRef]

R. Jenkins, R. Devereux, IEEE J. Quantum Electron. QE-21, 1722 (1985).
[CrossRef]

S. Wilson, R. Jenkins, R. Devereux, IEEE J. Quantum Electron. QE-23, 52 (1987).
[CrossRef]

R. Jenkins, R. Devereux, IEEE J. Quantum Electron. QE-22, 718 (1986).
[CrossRef]

F. Roullard, M. Bass, IEEE J. Quantum Electron. QE-13, 813 (1977).
[CrossRef]

J. Appl. Phys. (2)

T. Hidaka, K. Kumada, J. Shimada, T. Morikawa, J. Appl. Phys. 53, 5484 (1982); T. Hidaka, T. Morikawa, J. Shimada, K. Kumata, U.S. patent4,453,803.
[CrossRef]

M. Miyagi, Y. Shimada, A. Hongo, K. Sakamoto, S. Nishida, J. Appl. Phys. 60, 454 (1986).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Matsushima, K. Tanaka, Y. Okuda, T. Sueta, Jpn. J. Appl. Phys. 27, 1357 (1988).
[CrossRef]

Opt. Laser Technol. (1)

A. Hongo, M. Miyagi, S. Karasawa, S. Nishida, Opt. Laser Technol. 19, 214 (1987).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (3)

M. Miyagi, K. Harada, Y. Aizawa, S. Kawakami, Proc. Soc. Photo-Opt. Instrum. Eng. 484, 117 (1984).

J. Harrington, C. Gregory, R. Nubling, Proc. Soc. Photo-Opt. Instrum. Eng. 1048, 117 (1989).

C. Worrell, Proc. Soc. Photo-Opt. Instrum. Eng. 843, 80 (1987).

Other (3)

E. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985), p. 594; K. Laakmann, U.S. patent4,805,987.

Saphikon Inc., Milford, N.H. 03055.

T. Katsuyama, H. Matsumura, Infrared Optical Fibers (Hilger, Philadelphia, Pa., 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Attenuation of hollow sapphire fiber as a function of the fiber core size. The absorption for the n < 1 guide at 10.6 μm (circles) is substantially less than that for the n > 1 guide at 0.6328 μm (triangles). The dashed curve is the Marcatili–Schmeltzer theory.

Fig. 2
Fig. 2

Wavelength dependence of fiber loss over the CO2 laser wavelength region, with a bore diameter of 740 μm The Marcatili–Schmeltzer theory (the solid curve) predicts a lower loss, but the qualitative features illustrate the n < 1 and n > 1 regions.

Fig. 3
Fig. 3

Bending losses in the hollow waveguide for the small-bore fiber (bore diameter of 380 μm). The 1/R dependence agrees with the theory of Ref. 12.

Fig. 4
Fig. 4

Output-beam divergence of a straight (circles) and a bent (triangles) hollow fiber, with a bore diameter of 380 μm. The full-angle divergence is 3.1 deg for both fibers.

Tables (1)

Tables Icon

Table 1 Hollow Sapphire Fiber Sizes Studied

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α 11 ( ) = ( U nm 2 π ) 2 λ 2 a 3 Re { } ,
α 11 ( ) = ( U nm 2 π ) 2 λ 2 a 3 Re { 1 2 ( ν 2 + 1 ) ( ν 2 1 ) 1 / 2 } .
α 11 ( R ) = α 11 ( ) + f ( R , a , λ ) ,
α 11 ( R ) = 2 . 18 + 0 . 39 R ,

Metrics