Abstract

A new continuously tunable color filter, which uses smectic A* liquid-crystal half-wave plates, is described and experimentally demonstrated. Multiple-stage Lyot filters with broad tunability and high finesse can be constructed with this design. The transmission characteristics of a single-stage filter, which is continuously tuned over 115 nm of the visible spectrum, are presented. Experimental results are compared with computer simulations, and they show excellent agreement. The advantages of the smectic A* liquid-crystal tunable filter over existing filter structures include low switching voltages (±30 V), rapid tunability (10 MHz), potentially high transmission, wide field of view, and large aperture.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lyot, C. R. Acad. Sci. 197, 1593 (1933).
  2. I. C. Chang, Opt. Eng. 20, 824 (1981).
  3. J. F. Lotspeich, R. R Stephens, D. M. Henderson, Opt. Eng. 20, 830 (1981).
  4. W. Gunning, Appl. Opt. 21, 3129 (1982).
    [CrossRef] [PubMed]
  5. R. S. Weis, T. K. Gaylord, J. Opt. Soc. Am. A 4, 1720 (1987).
    [CrossRef]
  6. W. I. Kay, U.S. patent45,725 (filed June5, 1979).
  7. H. A. Tarry, Electron. Lett. 18, 47 (1975).
  8. W. Gunning, Proc. Soc. Photo-Opt. Instrum. Eng. 268, 190 (1980).
  9. S. Wu, Appl. Opt. 28, 48 (1989).
    [CrossRef] [PubMed]
  10. H. J. Masterson, G. D. Sharp, K. M. Johnson, Opt. Lett. 14, 1249 (1989).
    [CrossRef] [PubMed]
  11. G. Andersson, I. Dahl, L. Komitov, S. T. Lagerwall, K. Sharp, B. Stebler, “Device physics of the soft-mode electro-optic effect,” submitted to J. Appl. Phys.
  12. G. Andersson, I. Dahl, P. Keller, W. Kuczynski, S. T. Lagerwall, K. Sharp, B. Stebler, Appl. Phys. Lett. 51, 640 (1987).
    [CrossRef]
  13. A. M. Title, W. J. Rosenberg, Opt. Eng. 20, 815 (1981).
  14. R. C. Jones, J. Opt. Soc. Am. 31, 488 (1941).
    [CrossRef]
  15. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 5.
  16. BDH-764E mixture available from EM Industries Inc., 5 Skyline Drive, Hawthorne, N.Y. 10532.
  17. S. Wu, Phys. Rev. A 33, 1270 (1986).
    [CrossRef] [PubMed]

1989

1987

G. Andersson, I. Dahl, P. Keller, W. Kuczynski, S. T. Lagerwall, K. Sharp, B. Stebler, Appl. Phys. Lett. 51, 640 (1987).
[CrossRef]

R. S. Weis, T. K. Gaylord, J. Opt. Soc. Am. A 4, 1720 (1987).
[CrossRef]

1986

S. Wu, Phys. Rev. A 33, 1270 (1986).
[CrossRef] [PubMed]

1982

1981

I. C. Chang, Opt. Eng. 20, 824 (1981).

J. F. Lotspeich, R. R Stephens, D. M. Henderson, Opt. Eng. 20, 830 (1981).

A. M. Title, W. J. Rosenberg, Opt. Eng. 20, 815 (1981).

1980

W. Gunning, Proc. Soc. Photo-Opt. Instrum. Eng. 268, 190 (1980).

1975

H. A. Tarry, Electron. Lett. 18, 47 (1975).

1941

1933

B. Lyot, C. R. Acad. Sci. 197, 1593 (1933).

Andersson, G.

G. Andersson, I. Dahl, P. Keller, W. Kuczynski, S. T. Lagerwall, K. Sharp, B. Stebler, Appl. Phys. Lett. 51, 640 (1987).
[CrossRef]

G. Andersson, I. Dahl, L. Komitov, S. T. Lagerwall, K. Sharp, B. Stebler, “Device physics of the soft-mode electro-optic effect,” submitted to J. Appl. Phys.

Chang, I. C.

I. C. Chang, Opt. Eng. 20, 824 (1981).

Dahl, I.

G. Andersson, I. Dahl, P. Keller, W. Kuczynski, S. T. Lagerwall, K. Sharp, B. Stebler, Appl. Phys. Lett. 51, 640 (1987).
[CrossRef]

G. Andersson, I. Dahl, L. Komitov, S. T. Lagerwall, K. Sharp, B. Stebler, “Device physics of the soft-mode electro-optic effect,” submitted to J. Appl. Phys.

Gaylord, T. K.

Gunning, W.

W. Gunning, Appl. Opt. 21, 3129 (1982).
[CrossRef] [PubMed]

W. Gunning, Proc. Soc. Photo-Opt. Instrum. Eng. 268, 190 (1980).

Henderson, D. M.

J. F. Lotspeich, R. R Stephens, D. M. Henderson, Opt. Eng. 20, 830 (1981).

Johnson, K. M.

Jones, R. C.

Kay, W. I.

W. I. Kay, U.S. patent45,725 (filed June5, 1979).

Keller, P.

G. Andersson, I. Dahl, P. Keller, W. Kuczynski, S. T. Lagerwall, K. Sharp, B. Stebler, Appl. Phys. Lett. 51, 640 (1987).
[CrossRef]

Komitov, L.

G. Andersson, I. Dahl, L. Komitov, S. T. Lagerwall, K. Sharp, B. Stebler, “Device physics of the soft-mode electro-optic effect,” submitted to J. Appl. Phys.

Kuczynski, W.

G. Andersson, I. Dahl, P. Keller, W. Kuczynski, S. T. Lagerwall, K. Sharp, B. Stebler, Appl. Phys. Lett. 51, 640 (1987).
[CrossRef]

Lagerwall, S. T.

G. Andersson, I. Dahl, P. Keller, W. Kuczynski, S. T. Lagerwall, K. Sharp, B. Stebler, Appl. Phys. Lett. 51, 640 (1987).
[CrossRef]

G. Andersson, I. Dahl, L. Komitov, S. T. Lagerwall, K. Sharp, B. Stebler, “Device physics of the soft-mode electro-optic effect,” submitted to J. Appl. Phys.

Lotspeich, J. F.

J. F. Lotspeich, R. R Stephens, D. M. Henderson, Opt. Eng. 20, 830 (1981).

Lyot, B.

B. Lyot, C. R. Acad. Sci. 197, 1593 (1933).

Masterson, H. J.

Rosenberg, W. J.

A. M. Title, W. J. Rosenberg, Opt. Eng. 20, 815 (1981).

Sharp, G. D.

Sharp, K.

G. Andersson, I. Dahl, P. Keller, W. Kuczynski, S. T. Lagerwall, K. Sharp, B. Stebler, Appl. Phys. Lett. 51, 640 (1987).
[CrossRef]

G. Andersson, I. Dahl, L. Komitov, S. T. Lagerwall, K. Sharp, B. Stebler, “Device physics of the soft-mode electro-optic effect,” submitted to J. Appl. Phys.

Stebler, B.

G. Andersson, I. Dahl, P. Keller, W. Kuczynski, S. T. Lagerwall, K. Sharp, B. Stebler, Appl. Phys. Lett. 51, 640 (1987).
[CrossRef]

G. Andersson, I. Dahl, L. Komitov, S. T. Lagerwall, K. Sharp, B. Stebler, “Device physics of the soft-mode electro-optic effect,” submitted to J. Appl. Phys.

Stephens, R. R

J. F. Lotspeich, R. R Stephens, D. M. Henderson, Opt. Eng. 20, 830 (1981).

Tarry, H. A.

H. A. Tarry, Electron. Lett. 18, 47 (1975).

Title, A. M.

A. M. Title, W. J. Rosenberg, Opt. Eng. 20, 815 (1981).

Weis, R. S.

Wu, S.

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 5.

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 5.

Appl. Opt.

Appl. Phys. Lett.

G. Andersson, I. Dahl, P. Keller, W. Kuczynski, S. T. Lagerwall, K. Sharp, B. Stebler, Appl. Phys. Lett. 51, 640 (1987).
[CrossRef]

C. R. Acad. Sci.

B. Lyot, C. R. Acad. Sci. 197, 1593 (1933).

Electron. Lett.

H. A. Tarry, Electron. Lett. 18, 47 (1975).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Eng.

I. C. Chang, Opt. Eng. 20, 824 (1981).

J. F. Lotspeich, R. R Stephens, D. M. Henderson, Opt. Eng. 20, 830 (1981).

A. M. Title, W. J. Rosenberg, Opt. Eng. 20, 815 (1981).

Opt. Lett.

Phys. Rev. A

S. Wu, Phys. Rev. A 33, 1270 (1986).
[CrossRef] [PubMed]

Proc. Soc. Photo-Opt. Instrum. Eng.

W. Gunning, Proc. Soc. Photo-Opt. Instrum. Eng. 268, 190 (1980).

Other

G. Andersson, I. Dahl, L. Komitov, S. T. Lagerwall, K. Sharp, B. Stebler, “Device physics of the soft-mode electro-optic effect,” submitted to J. Appl. Phys.

W. I. Kay, U.S. patent45,725 (filed June5, 1979).

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 5.

BDH-764E mixture available from EM Industries Inc., 5 Skyline Drive, Hawthorne, N.Y. 10532.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Single-stage SmA* LCTF. The device is tuned by electronically rotating the crystal axes [ϕ(V)] of the LC half-wave plate.

Fig. 2
Fig. 2

Measured transmission spectrum (points) of the filter (a) in the unswitched state, (b) tuned maximally toward the blue, and (c) tuned maximally toward the red. The solid curves show the simulation results.

Fig. 3
Fig. 3

Simulation results of a three-stage Lyot filter. The solid curve represents the transmission of the filter in the unswitched state, the dotted curve is the spectrum at the shortest attainable wavelength, and the dashed line is the spectrum at the longest attainable wavelength. The device has a FWHM of 10 nm with continuous tunability over 70 nm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Γ ( λ ) = 2 π Δ nd λ ,
E ( λ ) = P x W ( λ ) AB ( λ ) P x E ( λ ) ,
P x = [ 1 0 0 0 ] ,
( λ ) = [ cos [ Γ ( λ ) / 2 ] i sin [ Γ ( λ ) / 2 ] i sin [ Γ ( λ ) / 2 ] cos [ Γ ( λ ) / 2 ] ] ,
A = [ e π / 4 0 0 e π / 4 ]
W ( λ ) = [ cos [ Γ L ( λ ) / 2 ] i cos ( 2 ϕ ) sin [ Γ L ( λ ) / 2 ] i sin ( 2 ϕ ) sin [ Γ L ( λ ) / 2 ] i sin ( 2 ϕ ) sin [ Γ L ( λ ) / 2 ] cos [ Γ L ( λ ) / 2 ] + i cos ( 2 ϕ ) sin [ Γ L ( λ ) / 2 ] ]
Γ L ( λ ) = π Δ n ( λ ) Δ n ( λ d ) λ d λ .
T ( λ ) = cos 2 [ Γ ( λ ) / 2 2 ϕ ] .

Metrics