Abstract

Phase retardance of a liquid-crystal-based, electrically tunable wave plate as a function of voltage and incident light intensity at 10.6 μm is measured using the Stokes–MacCullaugh ellipsometry technique. At intensities of up to 900 W/cm2, device performance is found to be driven by thermal effects and not optically induced reorientation effects.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-T. Wu, U. Efron, L. D. Hess, Appl. Phys. Lett. 44, 1033 (1984).
    [CrossRef]
  2. S.-T. Wu, U. Efron, L. D. Hess, Appl. Opt. 23, 3911 (1984).
    [CrossRef] [PubMed]
  3. L. Yao, Z. Zhiyao, W. Runwen, Opt. Lett. 13, 553 (1988).
    [CrossRef] [PubMed]
  4. G. N. Ramachandran, S. Ramaseshan, in Encyclopedia of Physics. Crystal Optics, Diffraction (Springer-Verlag, Berlin, 1961), Vol. 25, Pt. 1, pp. 35–41.
  5. H. J. Deuling, Mol. Cryst. Liq. Cryst. 19, 123 (1972). There are errors in the derivation, but the essential results are correct.
    [CrossRef]
  6. M. Schadt, F. Muller, IEEE Trans. Electron. Devices ED-25, 1125 (1978).
    [CrossRef]
  7. C. Klein, T. Dorschner, D. P. Resler, D. S. Hobbs, in Laser-Induced Damage in Optical Materials: 1988 (National Institute of Standards and Technology, Washington, D.C.) (to be published).

1988 (1)

1984 (2)

S.-T. Wu, U. Efron, L. D. Hess, Appl. Opt. 23, 3911 (1984).
[CrossRef] [PubMed]

S.-T. Wu, U. Efron, L. D. Hess, Appl. Phys. Lett. 44, 1033 (1984).
[CrossRef]

1978 (1)

M. Schadt, F. Muller, IEEE Trans. Electron. Devices ED-25, 1125 (1978).
[CrossRef]

1972 (1)

H. J. Deuling, Mol. Cryst. Liq. Cryst. 19, 123 (1972). There are errors in the derivation, but the essential results are correct.
[CrossRef]

Deuling, H. J.

H. J. Deuling, Mol. Cryst. Liq. Cryst. 19, 123 (1972). There are errors in the derivation, but the essential results are correct.
[CrossRef]

Dorschner, T.

C. Klein, T. Dorschner, D. P. Resler, D. S. Hobbs, in Laser-Induced Damage in Optical Materials: 1988 (National Institute of Standards and Technology, Washington, D.C.) (to be published).

Efron, U.

S.-T. Wu, U. Efron, L. D. Hess, Appl. Phys. Lett. 44, 1033 (1984).
[CrossRef]

S.-T. Wu, U. Efron, L. D. Hess, Appl. Opt. 23, 3911 (1984).
[CrossRef] [PubMed]

Hess, L. D.

S.-T. Wu, U. Efron, L. D. Hess, Appl. Opt. 23, 3911 (1984).
[CrossRef] [PubMed]

S.-T. Wu, U. Efron, L. D. Hess, Appl. Phys. Lett. 44, 1033 (1984).
[CrossRef]

Hobbs, D. S.

C. Klein, T. Dorschner, D. P. Resler, D. S. Hobbs, in Laser-Induced Damage in Optical Materials: 1988 (National Institute of Standards and Technology, Washington, D.C.) (to be published).

Klein, C.

C. Klein, T. Dorschner, D. P. Resler, D. S. Hobbs, in Laser-Induced Damage in Optical Materials: 1988 (National Institute of Standards and Technology, Washington, D.C.) (to be published).

Muller, F.

M. Schadt, F. Muller, IEEE Trans. Electron. Devices ED-25, 1125 (1978).
[CrossRef]

Ramachandran, G. N.

G. N. Ramachandran, S. Ramaseshan, in Encyclopedia of Physics. Crystal Optics, Diffraction (Springer-Verlag, Berlin, 1961), Vol. 25, Pt. 1, pp. 35–41.

Ramaseshan, S.

G. N. Ramachandran, S. Ramaseshan, in Encyclopedia of Physics. Crystal Optics, Diffraction (Springer-Verlag, Berlin, 1961), Vol. 25, Pt. 1, pp. 35–41.

Resler, D. P.

C. Klein, T. Dorschner, D. P. Resler, D. S. Hobbs, in Laser-Induced Damage in Optical Materials: 1988 (National Institute of Standards and Technology, Washington, D.C.) (to be published).

Runwen, W.

Schadt, M.

M. Schadt, F. Muller, IEEE Trans. Electron. Devices ED-25, 1125 (1978).
[CrossRef]

Wu, S.-T.

S.-T. Wu, U. Efron, L. D. Hess, Appl. Opt. 23, 3911 (1984).
[CrossRef] [PubMed]

S.-T. Wu, U. Efron, L. D. Hess, Appl. Phys. Lett. 44, 1033 (1984).
[CrossRef]

Yao, L.

Zhiyao, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S.-T. Wu, U. Efron, L. D. Hess, Appl. Phys. Lett. 44, 1033 (1984).
[CrossRef]

IEEE Trans. Electron. Devices (1)

M. Schadt, F. Muller, IEEE Trans. Electron. Devices ED-25, 1125 (1978).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

H. J. Deuling, Mol. Cryst. Liq. Cryst. 19, 123 (1972). There are errors in the derivation, but the essential results are correct.
[CrossRef]

Opt. Lett. (1)

Other (2)

G. N. Ramachandran, S. Ramaseshan, in Encyclopedia of Physics. Crystal Optics, Diffraction (Springer-Verlag, Berlin, 1961), Vol. 25, Pt. 1, pp. 35–41.

C. Klein, T. Dorschner, D. P. Resler, D. S. Hobbs, in Laser-Induced Damage in Optical Materials: 1988 (National Institute of Standards and Technology, Washington, D.C.) (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the measurement system.

Fig. 2
Fig. 2

Measured phase retardance versus voltage for the LC wave plate as a function of the incident 10.6-μm optical intensity.

Fig. 3
Fig. 3

Measured azimuth angle for the LC wave plate as a function of optical intensity. The absence of deviation away from 45° is clear evidence that the LC is not experiencing any optically induced reorientation at these intensities. In addition to random errors, the systematic error in establishing the azimuth angle initially at 45° is no larger than ±1°.

Fig. 4
Fig. 4

Modeled performance of a 25-μm-thick E7 LC phase retarder as a function of temperature. A decrease in the birefringence, Δn, is the most important reason for the loss of phase retardance with increasing temperature.

Metrics