Abstract

A multilayer surface plasmon resonance system was designed for high-precision chemical sensor applications. In this sensor, the angular distribution of reflectance from a thin metal film—which is in contact with a sample—is measured. An absorption peak is observed whose angular distribution of reflectance, owing to the excitation of surface plasmon resonance, is measured. The refractive index of the sample is determined from this peak angle. The resolution limit for refractive-index measurements is determined by the absorption peak width. We describe a multilayer system in which an additional layer is added to the conventional Kretschmann geometry; as a result, peak widths are significantly reduced. The angular distribution of reflectance is calculated using Fresnel's formulas and multiple-reflectance theory in order to understand the effect of thickness and refractive index of the additional layer. By optimizing the thickness of the layer, peak widths are reduced to approximately one third of that obtained using the Kretschmann geometry. Experimental results demonstrate the feasibility of this approach.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Nylander, B. Liedberg, T. Lind, Sens. Actuators 3, 79 (1982/83).
    [CrossRef]
  2. E. Kretschmann, Z. Phys. 241, 313 (1971).
    [CrossRef]
  3. B. Liedberg, C. Nylander, I. Lundström, Sens. Actuators 4, 299 (1983).
    [CrossRef]
  4. K. Matsubara, S. Kawata, S. Minami, Appl. Opt. 27, 1160 (1988).
    [CrossRef] [PubMed]
  5. K. Matsubara, S. Kawata, S. Minami, Appl. Spectrosc. 42, 1375 (1988).
    [CrossRef]
  6. T. Turbadar, Opt. Acta 11, 207 (1964).
    [CrossRef]
  7. D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).
    [CrossRef]
  8. R. T. Deck, D. Sarid, J. Opt. Soc. Am. 72, 1613 (1982).
    [CrossRef]
  9. F. Y. Kou, T. Tamir, Opt. Lett. 12, 367 (1987).
    [CrossRef] [PubMed]
  10. K. Matsubara, S. Kawata, S. Minami, in Technical Digest of 4th International Conference on Optical Fiber Sensors (Institute of Electronics and Communication Engineers, Tokyo, 1986), p. 287.

1988 (2)

1987 (1)

1983 (1)

B. Liedberg, C. Nylander, I. Lundström, Sens. Actuators 4, 299 (1983).
[CrossRef]

1982 (2)

R. T. Deck, D. Sarid, J. Opt. Soc. Am. 72, 1613 (1982).
[CrossRef]

C. Nylander, B. Liedberg, T. Lind, Sens. Actuators 3, 79 (1982/83).
[CrossRef]

1981 (1)

D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).
[CrossRef]

1971 (1)

E. Kretschmann, Z. Phys. 241, 313 (1971).
[CrossRef]

1964 (1)

T. Turbadar, Opt. Acta 11, 207 (1964).
[CrossRef]

Deck, R. T.

Kawata, S.

K. Matsubara, S. Kawata, S. Minami, Appl. Spectrosc. 42, 1375 (1988).
[CrossRef]

K. Matsubara, S. Kawata, S. Minami, Appl. Opt. 27, 1160 (1988).
[CrossRef] [PubMed]

K. Matsubara, S. Kawata, S. Minami, in Technical Digest of 4th International Conference on Optical Fiber Sensors (Institute of Electronics and Communication Engineers, Tokyo, 1986), p. 287.

Kou, F. Y.

Kretschmann, E.

E. Kretschmann, Z. Phys. 241, 313 (1971).
[CrossRef]

Liedberg, B.

B. Liedberg, C. Nylander, I. Lundström, Sens. Actuators 4, 299 (1983).
[CrossRef]

C. Nylander, B. Liedberg, T. Lind, Sens. Actuators 3, 79 (1982/83).
[CrossRef]

Lind, T.

C. Nylander, B. Liedberg, T. Lind, Sens. Actuators 3, 79 (1982/83).
[CrossRef]

Lundström, I.

B. Liedberg, C. Nylander, I. Lundström, Sens. Actuators 4, 299 (1983).
[CrossRef]

Matsubara, K.

K. Matsubara, S. Kawata, S. Minami, Appl. Opt. 27, 1160 (1988).
[CrossRef] [PubMed]

K. Matsubara, S. Kawata, S. Minami, Appl. Spectrosc. 42, 1375 (1988).
[CrossRef]

K. Matsubara, S. Kawata, S. Minami, in Technical Digest of 4th International Conference on Optical Fiber Sensors (Institute of Electronics and Communication Engineers, Tokyo, 1986), p. 287.

Minami, S.

K. Matsubara, S. Kawata, S. Minami, Appl. Opt. 27, 1160 (1988).
[CrossRef] [PubMed]

K. Matsubara, S. Kawata, S. Minami, Appl. Spectrosc. 42, 1375 (1988).
[CrossRef]

K. Matsubara, S. Kawata, S. Minami, in Technical Digest of 4th International Conference on Optical Fiber Sensors (Institute of Electronics and Communication Engineers, Tokyo, 1986), p. 287.

Nylander, C.

B. Liedberg, C. Nylander, I. Lundström, Sens. Actuators 4, 299 (1983).
[CrossRef]

C. Nylander, B. Liedberg, T. Lind, Sens. Actuators 3, 79 (1982/83).
[CrossRef]

Sarid, D.

Tamir, T.

Turbadar, T.

T. Turbadar, Opt. Acta 11, 207 (1964).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (1)

J. Opt. Soc. Am. (1)

Opt. Acta (1)

T. Turbadar, Opt. Acta 11, 207 (1964).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

D. Sarid, Phys. Rev. Lett. 47, 1927 (1981).
[CrossRef]

Sens. Actuators (2)

C. Nylander, B. Liedberg, T. Lind, Sens. Actuators 3, 79 (1982/83).
[CrossRef]

B. Liedberg, C. Nylander, I. Lundström, Sens. Actuators 4, 299 (1983).
[CrossRef]

Z. Phys. (1)

E. Kretschmann, Z. Phys. 241, 313 (1971).
[CrossRef]

Other (1)

K. Matsubara, S. Kawata, S. Minami, in Technical Digest of 4th International Conference on Optical Fiber Sensors (Institute of Electronics and Communication Engineers, Tokyo, 1986), p. 287.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Layer system used to excite and observe SPR: (a) the Kretschmann geometry and (b) the long-range surface plasmon (LRSP) geometry.

Fig. 2
Fig. 2

Calculated Rθ curves using the Kretschmann geometry. The three curves result from different metal thicknesses.

Fig. 3
Fig. 3

Calculated Rθ curves using the LRSP geometry, with the thickness of the metal film fixed at 44 nm. The three curves result from different thicknesses of the intermediate layer.

Fig. 4
Fig. 4

Calculated Rθ curves using the LRSP geometry, with the thickness of the intermediate layer fixed at 650 nm. The six curves result from different metal thicknesses.

Fig. 5
Fig. 5

Calculated Rθ curves using the LRSP geometry for various refractive indices of the intermediate layer.

Fig. 6
Fig. 6

Experimental setup.10 P, polarizer; BS, beam splitter; Ds, photodetector for the SPR signal; Dr, photodetector for the reference signal; L, lens; M, mirror surface; HM, sensing surface (metal films); ND, neutral density.

Fig. 7
Fig. 7

Experimental results. Rθ curves for the Kretschmann geometry [curve (a)] for the LRSP geometry [curve (b)].

Metrics