Abstract

Temperatures have been measured in a laminar premixed propane–air diffusion flame using degenerate four-wave mixing (DFWM) of the OH radical. The spectra were recorded simultaneously with laser-induced fluorescence through the (0, 0) band of the OH A2Σ–X2II transition. Individual rotational lines are more clearly resolved in the DFWM spectrum than in the laser-induced fluorescence spectrum, although both are power broadened at laser intensities of 1–2 MW/cm2 at 307 nm. Rotational temperatures have been determined from the DFWM spectra and are in close agreement with temperatures measured with coherent anti-Stokes Raman spectroscopy of nitrogen.

© 1990 Optical Society of America

Full Article  |  PDF Article

Errata

Thomas A. Reichardt and Robert P. Lucht, "Effect of Doppler broadening on quantitative concentration measurements with degenerate four-wave mixing spectroscopy," J. Opt. Soc. Am. B 13, 1107-1119 (1996)
https://www.osapublishing.org/josab/abstract.cfm?uri=josab-13-6-1107

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).
  2. T. S. Rose, W. L. Wilson, G. Wackerle, M. D. Fayer, J. Chem. Phys. 86, 5370 (1987).
    [CrossRef]
  3. For a detailed description of the DFWM process and its applications, see R. A. Fisher, ed., Optical Phase Conjugation (Academic, New York, 1984).
  4. J. Pender, L. Hesselink, Opt. Lett. 10, 264 (1985).
    [CrossRef] [PubMed]
  5. P. Ewart, S. V. O'Leary, Opt. Lett. 11, 279 (1986).
    [CrossRef] [PubMed]
  6. R. L. Abrams, R. C. Lind, Opt. Lett. 2, 94 (1978).
    [CrossRef] [PubMed]
  7. I. L. Chidsey, D. R. Crosley, J. Quant. Spectrosc. Radiat. Transfer 23, 187 (1980).
    [CrossRef]
  8. R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, C. R. Ferguson, Combust. Sci. Technol. 55, 41 (1987).
    [CrossRef]
  9. R. Trebino, C. E. Barker, A. E. Siegman, IEEE J. Quantum Electron. QE-22, 1413 (1986).
    [CrossRef]
  10. J. T. Salmon, N. M. Laurendeau, Appl. Opt. 24, 1313 (1985).
    [CrossRef] [PubMed]
  11. E. C. Rea, A. Y. Chang, R. K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 37, 117 (1987);J. Quant. Spectrosc. Radiat. Transfer 41, 29 (1989).
    [CrossRef]
  12. R. P. Lucht, in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. W. Solarz, J. A. Paisner, eds. (Dekker, New York, 1987).
  13. B. Attal-Tretout, P. Bouchardy, Rech. Aerosp. 5, 19 (1987).
  14. P. Ewart, P. Snowdon, I. Magnusson, Opt. Lett. 14, 563 (1989).
    [CrossRef] [PubMed]

1989

1987

T. S. Rose, W. L. Wilson, G. Wackerle, M. D. Fayer, J. Chem. Phys. 86, 5370 (1987).
[CrossRef]

E. C. Rea, A. Y. Chang, R. K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 37, 117 (1987);J. Quant. Spectrosc. Radiat. Transfer 41, 29 (1989).
[CrossRef]

B. Attal-Tretout, P. Bouchardy, Rech. Aerosp. 5, 19 (1987).

R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, C. R. Ferguson, Combust. Sci. Technol. 55, 41 (1987).
[CrossRef]

1986

R. Trebino, C. E. Barker, A. E. Siegman, IEEE J. Quantum Electron. QE-22, 1413 (1986).
[CrossRef]

P. Ewart, S. V. O'Leary, Opt. Lett. 11, 279 (1986).
[CrossRef] [PubMed]

1985

1980

I. L. Chidsey, D. R. Crosley, J. Quant. Spectrosc. Radiat. Transfer 23, 187 (1980).
[CrossRef]

1978

Abrams, R. L.

Attal-Tretout, B.

B. Attal-Tretout, P. Bouchardy, Rech. Aerosp. 5, 19 (1987).

Barker, C. E.

R. Trebino, C. E. Barker, A. E. Siegman, IEEE J. Quantum Electron. QE-22, 1413 (1986).
[CrossRef]

Bouchardy, P.

B. Attal-Tretout, P. Bouchardy, Rech. Aerosp. 5, 19 (1987).

Chang, A. Y.

E. C. Rea, A. Y. Chang, R. K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 37, 117 (1987);J. Quant. Spectrosc. Radiat. Transfer 41, 29 (1989).
[CrossRef]

Chidsey, I. L.

I. L. Chidsey, D. R. Crosley, J. Quant. Spectrosc. Radiat. Transfer 23, 187 (1980).
[CrossRef]

Crosley, D. R.

I. L. Chidsey, D. R. Crosley, J. Quant. Spectrosc. Radiat. Transfer 23, 187 (1980).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).

Ewart, P.

Fayer, M. D.

T. S. Rose, W. L. Wilson, G. Wackerle, M. D. Fayer, J. Chem. Phys. 86, 5370 (1987).
[CrossRef]

Ferguson, C. R.

R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, C. R. Ferguson, Combust. Sci. Technol. 55, 41 (1987).
[CrossRef]

Green, R. M.

R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, C. R. Ferguson, Combust. Sci. Technol. 55, 41 (1987).
[CrossRef]

Hanson, R. K.

E. C. Rea, A. Y. Chang, R. K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 37, 117 (1987);J. Quant. Spectrosc. Radiat. Transfer 41, 29 (1989).
[CrossRef]

Hesselink, L.

Laurendeau, N. M.

Lind, R. C.

Lucht, R. P.

R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, C. R. Ferguson, Combust. Sci. Technol. 55, 41 (1987).
[CrossRef]

R. P. Lucht, in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. W. Solarz, J. A. Paisner, eds. (Dekker, New York, 1987).

Magnusson, I.

O'Leary, S. V.

Palmer, R. E.

R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, C. R. Ferguson, Combust. Sci. Technol. 55, 41 (1987).
[CrossRef]

Pender, J.

Rea, E. C.

E. C. Rea, A. Y. Chang, R. K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 37, 117 (1987);J. Quant. Spectrosc. Radiat. Transfer 41, 29 (1989).
[CrossRef]

Rose, T. S.

T. S. Rose, W. L. Wilson, G. Wackerle, M. D. Fayer, J. Chem. Phys. 86, 5370 (1987).
[CrossRef]

Salmon, J. T.

Siegman, A. E.

R. Trebino, C. E. Barker, A. E. Siegman, IEEE J. Quantum Electron. QE-22, 1413 (1986).
[CrossRef]

Snowdon, P.

Teets, R. E.

R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, C. R. Ferguson, Combust. Sci. Technol. 55, 41 (1987).
[CrossRef]

Trebino, R.

R. Trebino, C. E. Barker, A. E. Siegman, IEEE J. Quantum Electron. QE-22, 1413 (1986).
[CrossRef]

Wackerle, G.

T. S. Rose, W. L. Wilson, G. Wackerle, M. D. Fayer, J. Chem. Phys. 86, 5370 (1987).
[CrossRef]

Wilson, W. L.

T. S. Rose, W. L. Wilson, G. Wackerle, M. D. Fayer, J. Chem. Phys. 86, 5370 (1987).
[CrossRef]

Appl. Opt.

Combust. Sci. Technol.

R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, C. R. Ferguson, Combust. Sci. Technol. 55, 41 (1987).
[CrossRef]

IEEE J. Quantum Electron.

R. Trebino, C. E. Barker, A. E. Siegman, IEEE J. Quantum Electron. QE-22, 1413 (1986).
[CrossRef]

J. Chem. Phys.

T. S. Rose, W. L. Wilson, G. Wackerle, M. D. Fayer, J. Chem. Phys. 86, 5370 (1987).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

I. L. Chidsey, D. R. Crosley, J. Quant. Spectrosc. Radiat. Transfer 23, 187 (1980).
[CrossRef]

E. C. Rea, A. Y. Chang, R. K. Hanson, J. Quant. Spectrosc. Radiat. Transfer 37, 117 (1987);J. Quant. Spectrosc. Radiat. Transfer 41, 29 (1989).
[CrossRef]

Opt. Lett.

Rech. Aerosp.

B. Attal-Tretout, P. Bouchardy, Rech. Aerosp. 5, 19 (1987).

Other

R. P. Lucht, in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. W. Solarz, J. A. Paisner, eds. (Dekker, New York, 1987).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).

For a detailed description of the DFWM process and its applications, see R. A. Fisher, ed., Optical Phase Conjugation (Academic, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for the simultaneous detection of DFWM and LIF signals of OH in a propane–air flame.

Fig. 2
Fig. 2

Simultaneous recording of the DFWM (solid curve) and LIF (dashed curve) signals as a function of doubled dye-laser wavelength. The pump-beam energy is 780 μJ and the probe-beam energy is 74 μJ. For clarity the LIF spectrum is offset with respect to the DFWM spectrum baseline by an arbitrary amount. The vertical scale is in arbitrary intensity units.

Fig. 3
Fig. 3

Boltzmann plot of OH population distribution derived from the DFWM spectrum as shown in Fig. 2. In the analysis R1 (triangles) and R2 (circles) transitions are used. The solid line is a least-squares linear regression line through the data points.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I signal [ B i j N OH ( υ , J ) ] 2 ,
N N ( υ = 0 ) ( 2 J + 1 ) exp ( Δ E N h c / k T ) ,
ln { I signal [ 2 ( N ± ½ ) + 1 ] B ij }

Metrics