Abstract

The influence of bends on light propagation in a step-index, nearly single-mode fiber is examined. We extend our theoretical results to the case of our particular fiber, and our experiments show good agreement with theory.

© 1990 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Gambling, H. Matsumura, Electron. Lett. 13, 532 (1977).
    [Crossref]
  2. Z.-W. Bao, M. Miyagi, S. Kawakami, Appl. Opt. 22, 3678 (1983).
    [Crossref] [PubMed]
  3. D. Kreit, R. C. Youngquist, D. E. N. Davies, Appl. Opt. 25, 4433 (1986).
    [Crossref] [PubMed]
  4. M. R. Layton, J. A. Bucaro, Appl. Opt. 18, 666 (1979).
    [Crossref] [PubMed]
  5. M. Spajer, B. Carquille, H. Maillotte, Opt. Commun. 60, 261 (1986).
    [Crossref]
  6. I. Verrier, J. P. Goure, Proc. Soc. Photo-Opt. Instrum. Eng. 805, 33 (1987).
  7. I. Verrier, J. P. Goure, J. Opt. Commun. 8, 151 (1987).
    [Crossref]
  8. S. J. Garth, IEEE Proc. 134, 221 (1987).
  9. K. Nagano, S. Kawakami, S. Nishida, Appl. Opt. 17, 2080 (1978).
    [Crossref] [PubMed]

1987 (3)

I. Verrier, J. P. Goure, Proc. Soc. Photo-Opt. Instrum. Eng. 805, 33 (1987).

I. Verrier, J. P. Goure, J. Opt. Commun. 8, 151 (1987).
[Crossref]

S. J. Garth, IEEE Proc. 134, 221 (1987).

1986 (2)

D. Kreit, R. C. Youngquist, D. E. N. Davies, Appl. Opt. 25, 4433 (1986).
[Crossref] [PubMed]

M. Spajer, B. Carquille, H. Maillotte, Opt. Commun. 60, 261 (1986).
[Crossref]

1983 (1)

1979 (1)

1978 (1)

1977 (1)

W. A. Gambling, H. Matsumura, Electron. Lett. 13, 532 (1977).
[Crossref]

Bao, Z.-W.

Bucaro, J. A.

Carquille, B.

M. Spajer, B. Carquille, H. Maillotte, Opt. Commun. 60, 261 (1986).
[Crossref]

Davies, D. E. N.

Gambling, W. A.

W. A. Gambling, H. Matsumura, Electron. Lett. 13, 532 (1977).
[Crossref]

Garth, S. J.

S. J. Garth, IEEE Proc. 134, 221 (1987).

Goure, J. P.

I. Verrier, J. P. Goure, Proc. Soc. Photo-Opt. Instrum. Eng. 805, 33 (1987).

I. Verrier, J. P. Goure, J. Opt. Commun. 8, 151 (1987).
[Crossref]

Kawakami, S.

Kreit, D.

Layton, M. R.

Maillotte, H.

M. Spajer, B. Carquille, H. Maillotte, Opt. Commun. 60, 261 (1986).
[Crossref]

Matsumura, H.

W. A. Gambling, H. Matsumura, Electron. Lett. 13, 532 (1977).
[Crossref]

Miyagi, M.

Nagano, K.

Nishida, S.

Spajer, M.

M. Spajer, B. Carquille, H. Maillotte, Opt. Commun. 60, 261 (1986).
[Crossref]

Verrier, I.

I. Verrier, J. P. Goure, Proc. Soc. Photo-Opt. Instrum. Eng. 805, 33 (1987).

I. Verrier, J. P. Goure, J. Opt. Commun. 8, 151 (1987).
[Crossref]

Youngquist, R. C.

Appl. Opt. (4)

Electron. Lett. (1)

W. A. Gambling, H. Matsumura, Electron. Lett. 13, 532 (1977).
[Crossref]

IEEE Proc. (1)

S. J. Garth, IEEE Proc. 134, 221 (1987).

J. Opt. Commun. (1)

I. Verrier, J. P. Goure, J. Opt. Commun. 8, 151 (1987).
[Crossref]

Opt. Commun. (1)

M. Spajer, B. Carquille, H. Maillotte, Opt. Commun. 60, 261 (1986).
[Crossref]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

I. Verrier, J. P. Goure, Proc. Soc. Photo-Opt. Instrum. Eng. 805, 33 (1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup. CCD, charge-coupled device; L's, lenses; P's, polarizers; oscillo, oscilloscope.

Fig. 2
Fig. 2

Plots of intensity distributions for α = 0°, 80°, −80°, and 100°.

Fig. 3
Fig. 3

Theoretical intensity distributions for α = 0°, 60°, 80°, and 100° for × = 0.08 (parallel to the Y axis but shifted by 0.2 μm).

Tables (1)

Tables Icon

Table 1 Comparison of the Theoretical and Measured Values for the Cross Section × = 0.08 with a Shift α = 20°

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

r = [ ( R R c ) 2 + Y 2 ] 1 / 2 , φ = arctan ( Y R R c ) , z = R c α .
E Yi = ( 1 + r R c cos φ ) 1 / 2 ( E i + a R c E 1 i ) × exp [ i z ( β i 2 + a 2 R c 2 β 2 i 2 ) 1 / 2 ] .
I ( r , φ ) = V Y 1 2 + V Y 2 2 + V Y 3 2 + 2 V Y 2 V Y 3 × cos [ a 2 2 R c 2 ( β 21 even 2 β 21 odd 2 ) z β 1 π 2 ] + 2 V Y 1 V Y 2 × cos [ ( β 0 β 1 ) L + z a 2 2 R c 2 ( β 20 2 β 0 β 21 odd 2 β 1 ) π 2 ] + 2 V Y 1 V Y 3 × cos [ ( β 0 β 1 ) L + z a 2 2 R c 2 ( β 20 2 β 0 β 21 even 2 β 1 ) ] .
ρ A = A measured A calculated
l = 22 h H = 0.27
l = 11 h H = 0.27

Metrics