Abstract

Spectral consequences that result from using birefringent media with broadband gain inside of laser cavities containing polarizing elements are described. We show that the laser intensity is modulated as a function of the output frequency unless the cavity elements are carefully aligned so that their polarization axis coincides with a principal optical axis of the gain medium. Analysis of the tuning characteristics of a birefringent polarization-dependent gain medium is exploited to provide a simple method for line narrowing the laser output. By introduction of an intracavity birefringent compensator the narrow-band output can be continuously tuned. Experimental results for alexandrite lasers are presented.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lyot, C. R. Acad. Sci. 197, 1593 (1933).
  2. A. L. Bloom, J. Opt. Soc. Am. 64, 447 (1974).
    [CrossRef]
  3. G. Holtom, O. Teschke, IEEE J. Quantum Electron. QE-10, 577 (1974).
    [CrossRef]
  4. J. C. Walling, H. Jenssen, O. Peterson, R. C. Morris, IEEE J. Quantum Electron. QE-16, 1302 (1980).
    [CrossRef]

1980 (1)

J. C. Walling, H. Jenssen, O. Peterson, R. C. Morris, IEEE J. Quantum Electron. QE-16, 1302 (1980).
[CrossRef]

1974 (2)

A. L. Bloom, J. Opt. Soc. Am. 64, 447 (1974).
[CrossRef]

G. Holtom, O. Teschke, IEEE J. Quantum Electron. QE-10, 577 (1974).
[CrossRef]

1933 (1)

B. Lyot, C. R. Acad. Sci. 197, 1593 (1933).

Bloom, A. L.

Holtom, G.

G. Holtom, O. Teschke, IEEE J. Quantum Electron. QE-10, 577 (1974).
[CrossRef]

Jenssen, H.

J. C. Walling, H. Jenssen, O. Peterson, R. C. Morris, IEEE J. Quantum Electron. QE-16, 1302 (1980).
[CrossRef]

Lyot, B.

B. Lyot, C. R. Acad. Sci. 197, 1593 (1933).

Morris, R. C.

J. C. Walling, H. Jenssen, O. Peterson, R. C. Morris, IEEE J. Quantum Electron. QE-16, 1302 (1980).
[CrossRef]

Peterson, O.

J. C. Walling, H. Jenssen, O. Peterson, R. C. Morris, IEEE J. Quantum Electron. QE-16, 1302 (1980).
[CrossRef]

Teschke, O.

G. Holtom, O. Teschke, IEEE J. Quantum Electron. QE-10, 577 (1974).
[CrossRef]

Walling, J. C.

J. C. Walling, H. Jenssen, O. Peterson, R. C. Morris, IEEE J. Quantum Electron. QE-16, 1302 (1980).
[CrossRef]

C. R. Acad. Sci. (1)

B. Lyot, C. R. Acad. Sci. 197, 1593 (1933).

IEEE J. Quantum Electron. (2)

G. Holtom, O. Teschke, IEEE J. Quantum Electron. QE-10, 577 (1974).
[CrossRef]

J. C. Walling, H. Jenssen, O. Peterson, R. C. Morris, IEEE J. Quantum Electron. QE-16, 1302 (1980).
[CrossRef]

J. Opt. Soc. Am. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Cavity configuration containing polarizing elements (P1 and P2) and a birefringent rod of length L. (a) A standing-wave cavity in which the rod is sandwiched between two polarizers. (b) A ring laser cavity. (c) A standing-wave cavity with a single polarizing element. HR, high reflector; OC, output coupler.

Fig. 2
Fig. 2

Computed relative intensity for polarized light incident upon on an alexandrite rod–polarizer system for misalignment angle α = 5°. The rod length L = 128.8 mm. Curve 1 is for ga = gb = 1, and curve 2 is for ga = 1.18 and gb = 3. [Curve 3 is for a rod–rod–polarizer system with ga = 1.39 and gb = 9 (see the text).]

Fig. 3
Fig. 3

Wavelength dependence of amplification for ga = 1.18 and gb = 3 and misalignment angles α = 15°, 25°, 35°, and 45°. The rod length L = 128.8 mm.

Fig. 4
Fig. 4

(a) Transmission of a five-element tuner (quartz plate thickness ratios are 1:2:2:5:5, where 1 = 0.513 mm). (b) The transmission spectrum of an unpumped polarizer–alexandrite rod–polarizer configuration. (c) The output spectrum of an alexandrite laser containing the rod sandwiched between two polarizers (the same rod as in Fig. 3, α = ~5°.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E x = E 0 g x 1 / 2 cos α cos ( ω t + Δ x ) ,
E y = E 0 g y 1 / 2 sin α cos ( ω t + Δ y ) ,
E out = E 0 [ g x 1 / 2 cos 2 α cos ( ω t + Δ x ) + g y 1 / 2 sin 2 α cos ( ω t + Δ y ) ] .
I out = E 0 2 / 2 { [ g x 1 / 2 cos 2 α + g y 1 / 2 sin 2 α cos ( Δ y - Δ x ) ] 2 + [ g y 1 / 2 sin 2 α sin ( Δ y - Δ x ) ] 2 } .
Δ λ = λ 2 / ( n x - n y l ) ,

Metrics