Abstract

Transform-limited ultrashort green and infrared light pulses have been generated from a Nd:YAG laser mode locked by an intracavity second-harmonic crystal in combination with a dichroic output coupler. The mode-locking process is based on substantial reconversion of the second-harmonic radiation back into fundamental radiation after reflection by the dichroic mirror. With this technique light pulses as short as 45 psec have been generated.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Stankov, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D. C., 1988), paper ThJ4.
  2. K. A. Stankov, J. Jethwa, Opt. Commun. 66, 41 (1988).
    [CrossRef]
  3. K. A. Stankov, Appl. Phys. B 45, 191 (1988).
    [CrossRef]
  4. K. A. Stankov, “Pulse shortening by a nonlinear-mirror mode-locker,” Appl. Opt. (to be published).
  5. P. Heinz, W. Kriegleder, A. Laubereau, Appl. Phys. A 43, 209 (1987).
    [CrossRef]
  6. K. A. Stankov, “The passive mode-locking using intracavity frequency doubling” (unpublished observations).

1988 (2)

K. A. Stankov, J. Jethwa, Opt. Commun. 66, 41 (1988).
[CrossRef]

K. A. Stankov, Appl. Phys. B 45, 191 (1988).
[CrossRef]

1987 (1)

P. Heinz, W. Kriegleder, A. Laubereau, Appl. Phys. A 43, 209 (1987).
[CrossRef]

Heinz, P.

P. Heinz, W. Kriegleder, A. Laubereau, Appl. Phys. A 43, 209 (1987).
[CrossRef]

Jethwa, J.

K. A. Stankov, J. Jethwa, Opt. Commun. 66, 41 (1988).
[CrossRef]

Kriegleder, W.

P. Heinz, W. Kriegleder, A. Laubereau, Appl. Phys. A 43, 209 (1987).
[CrossRef]

Laubereau, A.

P. Heinz, W. Kriegleder, A. Laubereau, Appl. Phys. A 43, 209 (1987).
[CrossRef]

Stankov, K. A.

K. A. Stankov, Appl. Phys. B 45, 191 (1988).
[CrossRef]

K. A. Stankov, J. Jethwa, Opt. Commun. 66, 41 (1988).
[CrossRef]

K. A. Stankov, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D. C., 1988), paper ThJ4.

K. A. Stankov, “Pulse shortening by a nonlinear-mirror mode-locker,” Appl. Opt. (to be published).

K. A. Stankov, “The passive mode-locking using intracavity frequency doubling” (unpublished observations).

Appl. Phys. A (1)

P. Heinz, W. Kriegleder, A. Laubereau, Appl. Phys. A 43, 209 (1987).
[CrossRef]

Appl. Phys. B (1)

K. A. Stankov, Appl. Phys. B 45, 191 (1988).
[CrossRef]

Opt. Commun. (1)

K. A. Stankov, J. Jethwa, Opt. Commun. 66, 41 (1988).
[CrossRef]

Other (3)

K. A. Stankov, in Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D. C., 1988), paper ThJ4.

K. A. Stankov, “Pulse shortening by a nonlinear-mirror mode-locker,” Appl. Opt. (to be published).

K. A. Stankov, “The passive mode-locking using intracavity frequency doubling” (unpublished observations).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for generating transform-limited ultrashort laser pulses by frequency-doubling mode locking. M1, total reflector mirror; P, polarizer; T, telescope; HS, harmonic splitter; KTP, frequency-doubling crystal; DM, dichroic mirror (total reflector at 532 nm, 25% reflection at 1064 nm).

Fig. 2
Fig. 2

Streak-camera record of an individual ultrashort laser pulse at 532 nm revealing a pulse duration of 42 psec (FWHM). The sweep rate is 2.36 psec/channel.

Fig. 3
Fig. 3

Fabry–Perot pattern of the laser radiation. The free spectral range is 50 GHz.

Metrics