Abstract

Laser cooling in a Mg atomic beam is reported for the first time to our knowledge. Previous cooling experiments were performed by using visible or infrared lasers. The Mg atoms were cooled by using an intracavity frequency-doubled dye laser at 285 nm to reach the resonant 1S01P1, transition. Evidence of laser cooling was obtained even with the limited available laser power (≈1–2 mW).

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. D. Phillips, J. V. Prodan, H. J. Metcalf, J. Opt. Soc. Am. B 2, 1751 (1985); V. G. Minogin, V. S. Letokhov, Laser Light Pressure on Atoms (Gordon & Breach, New York, 1987).
    [CrossRef]
  2. F. Strumia, in Laser Science and Technology, A. N. Chester, S. Martellucci, eds. (Plenum, New York, 1988).
  3. V. I. Balykin, V. S. Letokhov, A. I. Sidorov, Opt. Commun. 49, 248 (1984); Zh. Eksp. Teor. Fiz. 86, 2019 (1984).
    [CrossRef]
  4. W. Ertmer, R. Blatt, J. Hall, M. Zhu, Phys. Rev. Lett. 54, 996 (1985).
    [CrossRef] [PubMed]
  5. R. N. Watts, C. E. Wieman, Opt. Lett. 11, 291 (1986).
    [CrossRef] [PubMed]
  6. W. D. Phillips, J. V. Prodan, H. J. Metcalf, A. Migdall, I. So, J. Dalibard, Phys. Rev. Lett. 54, 992 (1985).
    [CrossRef] [PubMed]
  7. N. Beverini, E. Maccioni, D. Pereira, F. Strumia, G. Vissani, Y.-Z. Wang, in Advances in Laser Science III, AIP Conf. Proc.172, 313 (1988). Precise measurements of the wavelength and isotopic shifts of the 1S0–1P1 line can be found in this paper.
  8. We are indebted to the Istituto Elettrotecnico Nazionale–Torino for the loan of the ring dye laser.
  9. E. Bava, A. Godone, G. Giusfredi, C. Novero, IEEE J. Quantum Electron. QE-23, 455 (1987).
    [CrossRef]

1987

E. Bava, A. Godone, G. Giusfredi, C. Novero, IEEE J. Quantum Electron. QE-23, 455 (1987).
[CrossRef]

1986

1985

W. D. Phillips, J. V. Prodan, H. J. Metcalf, J. Opt. Soc. Am. B 2, 1751 (1985); V. G. Minogin, V. S. Letokhov, Laser Light Pressure on Atoms (Gordon & Breach, New York, 1987).
[CrossRef]

W. Ertmer, R. Blatt, J. Hall, M. Zhu, Phys. Rev. Lett. 54, 996 (1985).
[CrossRef] [PubMed]

W. D. Phillips, J. V. Prodan, H. J. Metcalf, A. Migdall, I. So, J. Dalibard, Phys. Rev. Lett. 54, 992 (1985).
[CrossRef] [PubMed]

1984

V. I. Balykin, V. S. Letokhov, A. I. Sidorov, Opt. Commun. 49, 248 (1984); Zh. Eksp. Teor. Fiz. 86, 2019 (1984).
[CrossRef]

Balykin, V. I.

V. I. Balykin, V. S. Letokhov, A. I. Sidorov, Opt. Commun. 49, 248 (1984); Zh. Eksp. Teor. Fiz. 86, 2019 (1984).
[CrossRef]

Bava, E.

E. Bava, A. Godone, G. Giusfredi, C. Novero, IEEE J. Quantum Electron. QE-23, 455 (1987).
[CrossRef]

Beverini, N.

N. Beverini, E. Maccioni, D. Pereira, F. Strumia, G. Vissani, Y.-Z. Wang, in Advances in Laser Science III, AIP Conf. Proc.172, 313 (1988). Precise measurements of the wavelength and isotopic shifts of the 1S0–1P1 line can be found in this paper.

Blatt, R.

W. Ertmer, R. Blatt, J. Hall, M. Zhu, Phys. Rev. Lett. 54, 996 (1985).
[CrossRef] [PubMed]

Dalibard, J.

W. D. Phillips, J. V. Prodan, H. J. Metcalf, A. Migdall, I. So, J. Dalibard, Phys. Rev. Lett. 54, 992 (1985).
[CrossRef] [PubMed]

Ertmer, W.

W. Ertmer, R. Blatt, J. Hall, M. Zhu, Phys. Rev. Lett. 54, 996 (1985).
[CrossRef] [PubMed]

Giusfredi, G.

E. Bava, A. Godone, G. Giusfredi, C. Novero, IEEE J. Quantum Electron. QE-23, 455 (1987).
[CrossRef]

Godone, A.

E. Bava, A. Godone, G. Giusfredi, C. Novero, IEEE J. Quantum Electron. QE-23, 455 (1987).
[CrossRef]

Hall, J.

W. Ertmer, R. Blatt, J. Hall, M. Zhu, Phys. Rev. Lett. 54, 996 (1985).
[CrossRef] [PubMed]

Letokhov, V. S.

V. I. Balykin, V. S. Letokhov, A. I. Sidorov, Opt. Commun. 49, 248 (1984); Zh. Eksp. Teor. Fiz. 86, 2019 (1984).
[CrossRef]

Maccioni, E.

N. Beverini, E. Maccioni, D. Pereira, F. Strumia, G. Vissani, Y.-Z. Wang, in Advances in Laser Science III, AIP Conf. Proc.172, 313 (1988). Precise measurements of the wavelength and isotopic shifts of the 1S0–1P1 line can be found in this paper.

Metcalf, H. J.

Migdall, A.

W. D. Phillips, J. V. Prodan, H. J. Metcalf, A. Migdall, I. So, J. Dalibard, Phys. Rev. Lett. 54, 992 (1985).
[CrossRef] [PubMed]

Novero, C.

E. Bava, A. Godone, G. Giusfredi, C. Novero, IEEE J. Quantum Electron. QE-23, 455 (1987).
[CrossRef]

Pereira, D.

N. Beverini, E. Maccioni, D. Pereira, F. Strumia, G. Vissani, Y.-Z. Wang, in Advances in Laser Science III, AIP Conf. Proc.172, 313 (1988). Precise measurements of the wavelength and isotopic shifts of the 1S0–1P1 line can be found in this paper.

Phillips, W. D.

Prodan, J. V.

Sidorov, A. I.

V. I. Balykin, V. S. Letokhov, A. I. Sidorov, Opt. Commun. 49, 248 (1984); Zh. Eksp. Teor. Fiz. 86, 2019 (1984).
[CrossRef]

So, I.

W. D. Phillips, J. V. Prodan, H. J. Metcalf, A. Migdall, I. So, J. Dalibard, Phys. Rev. Lett. 54, 992 (1985).
[CrossRef] [PubMed]

Strumia, F.

N. Beverini, E. Maccioni, D. Pereira, F. Strumia, G. Vissani, Y.-Z. Wang, in Advances in Laser Science III, AIP Conf. Proc.172, 313 (1988). Precise measurements of the wavelength and isotopic shifts of the 1S0–1P1 line can be found in this paper.

F. Strumia, in Laser Science and Technology, A. N. Chester, S. Martellucci, eds. (Plenum, New York, 1988).

Vissani, G.

N. Beverini, E. Maccioni, D. Pereira, F. Strumia, G. Vissani, Y.-Z. Wang, in Advances in Laser Science III, AIP Conf. Proc.172, 313 (1988). Precise measurements of the wavelength and isotopic shifts of the 1S0–1P1 line can be found in this paper.

Wang, Y.-Z.

N. Beverini, E. Maccioni, D. Pereira, F. Strumia, G. Vissani, Y.-Z. Wang, in Advances in Laser Science III, AIP Conf. Proc.172, 313 (1988). Precise measurements of the wavelength and isotopic shifts of the 1S0–1P1 line can be found in this paper.

Watts, R. N.

Wieman, C. E.

Zhu, M.

W. Ertmer, R. Blatt, J. Hall, M. Zhu, Phys. Rev. Lett. 54, 996 (1985).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

E. Bava, A. Godone, G. Giusfredi, C. Novero, IEEE J. Quantum Electron. QE-23, 455 (1987).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

V. I. Balykin, V. S. Letokhov, A. I. Sidorov, Opt. Commun. 49, 248 (1984); Zh. Eksp. Teor. Fiz. 86, 2019 (1984).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

W. D. Phillips, J. V. Prodan, H. J. Metcalf, A. Migdall, I. So, J. Dalibard, Phys. Rev. Lett. 54, 992 (1985).
[CrossRef] [PubMed]

W. Ertmer, R. Blatt, J. Hall, M. Zhu, Phys. Rev. Lett. 54, 996 (1985).
[CrossRef] [PubMed]

Other

F. Strumia, in Laser Science and Technology, A. N. Chester, S. Martellucci, eds. (Plenum, New York, 1988).

N. Beverini, E. Maccioni, D. Pereira, F. Strumia, G. Vissani, Y.-Z. Wang, in Advances in Laser Science III, AIP Conf. Proc.172, 313 (1988). Precise measurements of the wavelength and isotopic shifts of the 1S0–1P1 line can be found in this paper.

We are indebted to the Istituto Elettrotecnico Nazionale–Torino for the loan of the ring dye laser.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental apparatus. PM, photomultiplier.

Fig. 2
Fig. 2

Laser cooling observed in the absence of a magnetic field for two different frequency settings of the cooling laser beam.

Fig. 3
Fig. 3

Evidence of Zeeman tuning in the laser cooling. Lower curve, no magnetic field with the cooling laser beam at a fixed frequency corresponding to a velocity ~500 m/sec; upper curve, the magnetic field on with a maximum value of B(0) = 0.03T. In the horizontal scale a probe-laser frequency tuning of 1 GHz corresponds to a velocity change of 285 m/sec; the vertical scale is in arbitrary units.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L ( S ) = v 0 2 M λ τ h ( 1 + 1 S ) ,
B ( z ) = B ( 0 ) 1 - z L ( S ) .
d B d z v ˙ μ λ v ,

Metrics