Abstract

We report a new technique for producing high-efficiency XUV Bragg (volume) holographic optical elements by recording interference patterns in a photosensitive coating in either the visible or XUV region. Theoretical calculations and analysis of experimental results have successfully demonstrated the significance of this new fabrication methodology for XUV holographic optical elements, with over 25% diffraction efficiency achieved. In addition, volume holographic optics offer high flexibility in conventional and nonconventional operations, high laser-damage threshold and temperature stability, low surface roughness, and cost effectiveness in mass production.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Bruijn, J. Verhoeven, M. J. van der Wiel, W. J. Bartels, Opt. Eng. 26, 679 (1987).
  2. S. V. Gaponov, S. A. Gusev, Yu. Ya. Platonov, N. N. Salashchenko, Sov. Phys. Tech. Phys. 29, 442 (1984).
  3. H. J. Lezec, E. H. Anderson, H. I. Smith, J. Vac. Sci. Technol. B1, 1204 (1983).
  4. D. C. Flanders, N. N. Efremow, J. Vac. Sci. Technol. B1, 1105 (1983).
  5. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, At. Data Nucl. Data Tables 27, 1 (1982).
    [CrossRef]
  6. T. Jannson, Proc. Soc. Photo-Opt. Instrum. Eng. 830, 112 (1987).
  7. T. Jannson, J. Jannson, Proc. Soc. Photo-Opt. Instrum. Eng. 883, 84 (1988).
  8. D. L. Windt, W. C. Cash, M. Scott, P. Arendt, B. Newnam, R. F. Fisher, A. B. Swartzlander, P. Z. Takacs, J. M. Pinneo, Appl. Opt. 27, 279 (1988).
    [CrossRef] [PubMed]
  9. J. H. Underwood, T. W. Barbee, Appl. Opt. 20, 3027 (1981).
    [CrossRef] [PubMed]

1988

1987

T. Jannson, Proc. Soc. Photo-Opt. Instrum. Eng. 830, 112 (1987).

M. P. Bruijn, J. Verhoeven, M. J. van der Wiel, W. J. Bartels, Opt. Eng. 26, 679 (1987).

1984

S. V. Gaponov, S. A. Gusev, Yu. Ya. Platonov, N. N. Salashchenko, Sov. Phys. Tech. Phys. 29, 442 (1984).

1983

H. J. Lezec, E. H. Anderson, H. I. Smith, J. Vac. Sci. Technol. B1, 1204 (1983).

D. C. Flanders, N. N. Efremow, J. Vac. Sci. Technol. B1, 1105 (1983).

1982

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

1981

Anderson, E. H.

H. J. Lezec, E. H. Anderson, H. I. Smith, J. Vac. Sci. Technol. B1, 1204 (1983).

Arendt, P.

Barbee, T. W.

Bartels, W. J.

M. P. Bruijn, J. Verhoeven, M. J. van der Wiel, W. J. Bartels, Opt. Eng. 26, 679 (1987).

Bruijn, M. P.

M. P. Bruijn, J. Verhoeven, M. J. van der Wiel, W. J. Bartels, Opt. Eng. 26, 679 (1987).

Cash, W. C.

Efremow, N. N.

D. C. Flanders, N. N. Efremow, J. Vac. Sci. Technol. B1, 1105 (1983).

Fisher, R. F.

Flanders, D. C.

D. C. Flanders, N. N. Efremow, J. Vac. Sci. Technol. B1, 1105 (1983).

Fujikawa, B. K.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

Gaponov, S. V.

S. V. Gaponov, S. A. Gusev, Yu. Ya. Platonov, N. N. Salashchenko, Sov. Phys. Tech. Phys. 29, 442 (1984).

Gusev, S. A.

S. V. Gaponov, S. A. Gusev, Yu. Ya. Platonov, N. N. Salashchenko, Sov. Phys. Tech. Phys. 29, 442 (1984).

Henke, B. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

Jannson, J.

T. Jannson, J. Jannson, Proc. Soc. Photo-Opt. Instrum. Eng. 883, 84 (1988).

Jannson, T.

T. Jannson, J. Jannson, Proc. Soc. Photo-Opt. Instrum. Eng. 883, 84 (1988).

T. Jannson, Proc. Soc. Photo-Opt. Instrum. Eng. 830, 112 (1987).

Lee, P.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

Lezec, H. J.

H. J. Lezec, E. H. Anderson, H. I. Smith, J. Vac. Sci. Technol. B1, 1204 (1983).

Newnam, B.

Pinneo, J. M.

Platonov, Yu. Ya.

S. V. Gaponov, S. A. Gusev, Yu. Ya. Platonov, N. N. Salashchenko, Sov. Phys. Tech. Phys. 29, 442 (1984).

Salashchenko, N. N.

S. V. Gaponov, S. A. Gusev, Yu. Ya. Platonov, N. N. Salashchenko, Sov. Phys. Tech. Phys. 29, 442 (1984).

Scott, M.

Shimabukuro, R. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

Smith, H. I.

H. J. Lezec, E. H. Anderson, H. I. Smith, J. Vac. Sci. Technol. B1, 1204 (1983).

Swartzlander, A. B.

Takacs, P. Z.

Tanaka, T. J.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

Underwood, J. H.

van der Wiel, M. J.

M. P. Bruijn, J. Verhoeven, M. J. van der Wiel, W. J. Bartels, Opt. Eng. 26, 679 (1987).

Verhoeven, J.

M. P. Bruijn, J. Verhoeven, M. J. van der Wiel, W. J. Bartels, Opt. Eng. 26, 679 (1987).

Windt, D. L.

Appl. Opt.

At. Data Nucl. Data Tables

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

J. Vac. Sci. Technol.

H. J. Lezec, E. H. Anderson, H. I. Smith, J. Vac. Sci. Technol. B1, 1204 (1983).

D. C. Flanders, N. N. Efremow, J. Vac. Sci. Technol. B1, 1105 (1983).

Opt. Eng.

M. P. Bruijn, J. Verhoeven, M. J. van der Wiel, W. J. Bartels, Opt. Eng. 26, 679 (1987).

Proc. Soc. Photo-Opt. Instrum. Eng.

T. Jannson, Proc. Soc. Photo-Opt. Instrum. Eng. 830, 112 (1987).

T. Jannson, J. Jannson, Proc. Soc. Photo-Opt. Instrum. Eng. 883, 84 (1988).

Sov. Phys. Tech. Phys.

S. V. Gaponov, S. A. Gusev, Yu. Ya. Platonov, N. N. Salashchenko, Sov. Phys. Tech. Phys. 29, 442 (1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Geometry of a Lippmann holographic recording.

Fig. 2
Fig. 2

Geometry and notation for the theoretical diffraction efficiency.

Fig. 3
Fig. 3

Experimental curve of the HOE diffraction efficiency versus the incident angle at three x-ray wavelengths.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Λ = λ 0 / ( 2 n 0 sin ϕ 0 ) ,
n ^ = n - j β = 1 - r e λ x 2 2 π N a ( f 1 + j f 2 ) ,
sin ϕ B = n 0 λ x sin ϕ 0 n λ 0 ,
S = lim T S = - j F ^ 1 + 1 + F ^ 2 ,
F ^ = π n 1 α λ x - j α 1 2 α .
a = Δ N a / N a ,
b = f 1 / f 2 ,
F ^ = a b / 8 - j a / 4.
R = R f exp [ - ( 4 π σ cos θ i / λ ) 2 ] ,
R g = R s + i = 1 R h i R s i - 1 T f 2 = R s + T f 2 R h 1 - R h R s ,
R f + T f = 1.
R h = R g - R s ( R g - R s ) R s + ( 1 - R f ) 2 ,
R f = R r exp [ ( 4 π σ r cos θ i / λ ) 2 ] ,
R s = R r exp [ ( 4 π cos θ i / λ ) 2 ( σ r 2 - σ g 2 ) ] .

Metrics