Abstract

Low-loss, polarization-maintaining, all-fiber ring resonators can exhibit nonlinear propagation effects occurring at relatively low input powers. Observations have been made of stimulated Brillouin scattering with input powers of 65 μW that lead to significant nonlinear variations in the measured value of finesse owing to depletion of the power through the stimulated-Brillouin-scattering process. Variations of measured finesse from 320 to 210 have been observed for a variation in input power of 155 μW. The nature of this variation in resonator finesse with input power has been studied and is shown to depend on the level of the input power when the resonator response is optimized.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Y. Yue, J. D. Peng, Y. P. Liao, B. K. Zhou, Electron. Lett. 24, 622 (1988).
    [CrossRef]
  2. D. Cotter, J. Opt. Commun. 4, 86 (1983).
  3. R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
    [CrossRef]
  4. E. P. Ippen, R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
    [CrossRef]
  5. L. F. Stokes, M. Chodorow, H. J. Shaw, Opt. Lett. 7, 509 (1982).
    [CrossRef] [PubMed]
  6. D. Cotter, Electron. Lett. 18, 638 (1982).
    [CrossRef]
  7. M. Tsubokawa, S. Seikai, T. Nakashima, N. Shibata, Electron. Lett. 22, 473 (1986).
    [CrossRef]
  8. Z. K. Ioannidis, P. M. Radmore, I. P. Giles, Opt. Lett. 13, 422 (1988).
    [CrossRef] [PubMed]

1988 (2)

G. Y. Yue, J. D. Peng, Y. P. Liao, B. K. Zhou, Electron. Lett. 24, 622 (1988).
[CrossRef]

Z. K. Ioannidis, P. M. Radmore, I. P. Giles, Opt. Lett. 13, 422 (1988).
[CrossRef] [PubMed]

1986 (1)

M. Tsubokawa, S. Seikai, T. Nakashima, N. Shibata, Electron. Lett. 22, 473 (1986).
[CrossRef]

1983 (1)

D. Cotter, J. Opt. Commun. 4, 86 (1983).

1982 (2)

1979 (1)

R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
[CrossRef]

1972 (1)

E. P. Ippen, R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[CrossRef]

Chodorow, M.

Cotter, D.

D. Cotter, J. Opt. Commun. 4, 86 (1983).

D. Cotter, Electron. Lett. 18, 638 (1982).
[CrossRef]

Giles, I. P.

Ioannidis, Z. K.

Ippen, E. P.

E. P. Ippen, R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[CrossRef]

Liao, Y. P.

G. Y. Yue, J. D. Peng, Y. P. Liao, B. K. Zhou, Electron. Lett. 24, 622 (1988).
[CrossRef]

Nakashima, T.

M. Tsubokawa, S. Seikai, T. Nakashima, N. Shibata, Electron. Lett. 22, 473 (1986).
[CrossRef]

Peng, J. D.

G. Y. Yue, J. D. Peng, Y. P. Liao, B. K. Zhou, Electron. Lett. 24, 622 (1988).
[CrossRef]

Radmore, P. M.

Seikai, S.

M. Tsubokawa, S. Seikai, T. Nakashima, N. Shibata, Electron. Lett. 22, 473 (1986).
[CrossRef]

Shaw, H. J.

Shibata, N.

M. Tsubokawa, S. Seikai, T. Nakashima, N. Shibata, Electron. Lett. 22, 473 (1986).
[CrossRef]

Stokes, L. F.

Stolen, R. H.

R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
[CrossRef]

E. P. Ippen, R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[CrossRef]

Tsubokawa, M.

M. Tsubokawa, S. Seikai, T. Nakashima, N. Shibata, Electron. Lett. 22, 473 (1986).
[CrossRef]

Yue, G. Y.

G. Y. Yue, J. D. Peng, Y. P. Liao, B. K. Zhou, Electron. Lett. 24, 622 (1988).
[CrossRef]

Zhou, B. K.

G. Y. Yue, J. D. Peng, Y. P. Liao, B. K. Zhou, Electron. Lett. 24, 622 (1988).
[CrossRef]

Appl. Phys. Lett. (1)

E. P. Ippen, R. H. Stolen, Appl. Phys. Lett. 21, 539 (1972).
[CrossRef]

Electron. Lett. (3)

D. Cotter, Electron. Lett. 18, 638 (1982).
[CrossRef]

M. Tsubokawa, S. Seikai, T. Nakashima, N. Shibata, Electron. Lett. 22, 473 (1986).
[CrossRef]

G. Y. Yue, J. D. Peng, Y. P. Liao, B. K. Zhou, Electron. Lett. 24, 622 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
[CrossRef]

J. Opt. Commun. (1)

D. Cotter, J. Opt. Commun. 4, 86 (1983).

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for monitoring SBS in a PM ring resonator. PZT, piezoelectric transducer; Pout, output power; Pc,s, circulating Stokes power; Pi, input pump power. Ps, Stokes power; Pc, circulating pump power.

Fig. 2
Fig. 2

Transient response of pump power buildup in a 1-m ring resonator with F = 260, showing the expected response when SBS depletion (1) is not taken into account and (2) is taken into account.

Fig. 3
Fig. 3

Level of SBS power out detected for F values (maximized at low powers) of (1) 330 and (2) 300.

Fig. 4
Fig. 4

Observed variations in the measured finesse (squares) and modulation depth (filled diamonds) with input power for a fixed coupling constant (optimized at low powers) of a 3-m PM ring resonator.

Fig. 5
Fig. 5

Observed variation in the measured finesse with input power, with the coupling constant readjusted at each input power for optimum resonance.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

K r = ( 1 - γ 0 ) exp ( - 2 α 0 L )
P c = P i ( 1 - K r ) / ( 1 - γ 0 ) ,
F π K r / ( 1 - K r ) ,
P c / P i F / π .
( 1 - γ 0 ) K r exp ( - 2 α 0 L ) exp ( g P c , th L eff / A ) = 1 ,
P i , th 2 A π 2 / ( g L F 2 ) .
F π P c , th / P i .

Metrics