Abstract

The effect of pump or Stokes field polarization-state changes on Brillouin gain is investigated in standard (non-polarization-maintaining) single-mode fibers with a modal birefringence of ~10−7. The Brillouin gain change due to polarization azimuth variation of the input pump or Stokes field reaches ±31% of the average gain expected for a completely scrambled polarization state. This polarization effect on the Brillouin gain may lead to cross-talk fluctuation in bidirectional coherent transmission systems and to degradation of Brillouin amplifier performance.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Cotter, J. Opt. Commun. 1, 10 (1983).
  2. R. G. Waarts, R. P. Braun, Electron. Lett. 21, 1114 (1985).
    [CrossRef]
  3. N. A. Olsson, J. P. van der Ziel, Appl. Phys. Lett. 48, 1329 (1986).
    [CrossRef]
  4. R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
    [CrossRef]
  5. T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
    [CrossRef]
  6. M. Tsubokawa, N. Shibata, S. Seikai, IEEE J. Lightwave Technol. LT-3, 850 (1985).
    [CrossRef]
  7. T. Okoshi, IEEE J. Lightwave Technol. LT-3, 1232 (1985).
    [CrossRef]

1986 (1)

N. A. Olsson, J. P. van der Ziel, Appl. Phys. Lett. 48, 1329 (1986).
[CrossRef]

1985 (3)

R. G. Waarts, R. P. Braun, Electron. Lett. 21, 1114 (1985).
[CrossRef]

M. Tsubokawa, N. Shibata, S. Seikai, IEEE J. Lightwave Technol. LT-3, 850 (1985).
[CrossRef]

T. Okoshi, IEEE J. Lightwave Technol. LT-3, 1232 (1985).
[CrossRef]

1983 (1)

D. Cotter, J. Opt. Commun. 1, 10 (1983).

1981 (1)

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

1979 (1)

R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
[CrossRef]

Braun, R. P.

R. G. Waarts, R. P. Braun, Electron. Lett. 21, 1114 (1985).
[CrossRef]

Cotter, D.

D. Cotter, J. Opt. Commun. 1, 10 (1983).

Edahiro, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

Hosaka, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

Miya, T.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

Okamoto, K.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

Okoshi, T.

T. Okoshi, IEEE J. Lightwave Technol. LT-3, 1232 (1985).
[CrossRef]

Olsson, N. A.

N. A. Olsson, J. P. van der Ziel, Appl. Phys. Lett. 48, 1329 (1986).
[CrossRef]

Sasaki, Y.

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

Seikai, S.

M. Tsubokawa, N. Shibata, S. Seikai, IEEE J. Lightwave Technol. LT-3, 850 (1985).
[CrossRef]

Shibata, N.

M. Tsubokawa, N. Shibata, S. Seikai, IEEE J. Lightwave Technol. LT-3, 850 (1985).
[CrossRef]

Stolen, R. H.

R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
[CrossRef]

Tsubokawa, M.

M. Tsubokawa, N. Shibata, S. Seikai, IEEE J. Lightwave Technol. LT-3, 850 (1985).
[CrossRef]

van der Ziel, J. P.

N. A. Olsson, J. P. van der Ziel, Appl. Phys. Lett. 48, 1329 (1986).
[CrossRef]

Waarts, R. G.

R. G. Waarts, R. P. Braun, Electron. Lett. 21, 1114 (1985).
[CrossRef]

Appl. Phys. Lett. (1)

N. A. Olsson, J. P. van der Ziel, Appl. Phys. Lett. 48, 1329 (1986).
[CrossRef]

Electron. Lett. (2)

R. G. Waarts, R. P. Braun, Electron. Lett. 21, 1114 (1985).
[CrossRef]

T. Hosaka, K. Okamoto, T. Miya, Y. Sasaki, T. Edahiro, Electron. Lett. 17, 530 (1981).
[CrossRef]

IEEE J. Lightwave Technol. (2)

M. Tsubokawa, N. Shibata, S. Seikai, IEEE J. Lightwave Technol. LT-3, 850 (1985).
[CrossRef]

T. Okoshi, IEEE J. Lightwave Technol. LT-3, 1232 (1985).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
[CrossRef]

J. Opt. Commun. (1)

D. Cotter, J. Opt. Commun. 1, 10 (1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental arrangement for measuring the Brillouin gain.

Fig. 2
Fig. 2

Experimental results of the Brillouin gain for (a) fiber A and (b) fiber B as a function of the polarization azimuth of the input pump beam.

Fig. 3
Fig. 3

Experimental results for the normalized amplitude of the Brillouin gain variation K as a function of the fiber length.

Tables (1)

Tables Icon

Table 1 Experimental Measurements of G, K, G0, and Other Parameters Necessary for the Calculation of G0

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g = G [ 1 + K cos ( 2 θ ) ] ,
G 0 = ( 2 π n 7 p 12 2 γ / c λ 2 ρ 0 v a Δ ν B ) ( P / A ) L e ,
L e = [ 1 - exp ( - α L ) ] / α ,

Metrics