Abstract

The holographic double-exposure technique is applied to elementary gratings in photorefractive crystals. The result is an interconnection strength that is a continuous function of the phase shift between the two gratings. In fan-in and fan-out situations, where multiple phase gratings are required, it is possible to alter each interconnection separately without affecting the others.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Van Heerden, Appl. Opt. 2, 393 (1963).
    [CrossRef]
  2. D. E. Rumelhart, J. L. McClelland, eds., Parallel Distributed Processing (MIT, Cambridge, Mass., 1986), Vol. 1.
  3. P. Gunter, J.-P. Huignard, eds., Photorefractive Materials and Applications (Springer-Verlag, Berlin, 1988), Vols. 1 and 2.
    [CrossRef]
  4. D. Psaltis, D. Brady, K. Wagner, Appl. Opt. 27, 1752 (1988).
    [CrossRef]
  5. J. T. LaMacchia, D. L. White, Appl. Opt. 7, 91 (1968).
    [CrossRef] [PubMed]
  6. D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, Appl. Phys. Lett. 26, 182 (1975).
    [CrossRef]
  7. H. Kurz, Opt. Acta 24, 463 (1977).
    [CrossRef]
  8. D. Gabor, G. W. Stroke, R. Restrick, A. Funkhouser, D. Brumm, Phys. Lett. 18, 116 (1965).
    [CrossRef]
  9. J.-P. Huignard, J.-P. Herriau, F. Micheron, Ferroelectrics 11, 393 (1976).
    [CrossRef]
  10. G. Kavounas, W. H. Steier, in Digest of Topical Meeting on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D. C., 1987), p. 155.
  11. J. W. Goodman, Opt. Acta 32, 1489 (1985).
    [CrossRef]

1988 (1)

1985 (1)

J. W. Goodman, Opt. Acta 32, 1489 (1985).
[CrossRef]

1977 (1)

H. Kurz, Opt. Acta 24, 463 (1977).
[CrossRef]

1976 (1)

J.-P. Huignard, J.-P. Herriau, F. Micheron, Ferroelectrics 11, 393 (1976).
[CrossRef]

1975 (1)

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, Appl. Phys. Lett. 26, 182 (1975).
[CrossRef]

1968 (1)

1965 (1)

D. Gabor, G. W. Stroke, R. Restrick, A. Funkhouser, D. Brumm, Phys. Lett. 18, 116 (1965).
[CrossRef]

1963 (1)

Amodei, J. J.

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, Appl. Phys. Lett. 26, 182 (1975).
[CrossRef]

Brady, D.

Brumm, D.

D. Gabor, G. W. Stroke, R. Restrick, A. Funkhouser, D. Brumm, Phys. Lett. 18, 116 (1965).
[CrossRef]

Burke, W. J.

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, Appl. Phys. Lett. 26, 182 (1975).
[CrossRef]

Funkhouser, A.

D. Gabor, G. W. Stroke, R. Restrick, A. Funkhouser, D. Brumm, Phys. Lett. 18, 116 (1965).
[CrossRef]

Gabor, D.

D. Gabor, G. W. Stroke, R. Restrick, A. Funkhouser, D. Brumm, Phys. Lett. 18, 116 (1965).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Opt. Acta 32, 1489 (1985).
[CrossRef]

Herriau, J.-P.

J.-P. Huignard, J.-P. Herriau, F. Micheron, Ferroelectrics 11, 393 (1976).
[CrossRef]

Huignard, J.-P.

J.-P. Huignard, J.-P. Herriau, F. Micheron, Ferroelectrics 11, 393 (1976).
[CrossRef]

Kavounas, G.

G. Kavounas, W. H. Steier, in Digest of Topical Meeting on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D. C., 1987), p. 155.

Kurz, H.

H. Kurz, Opt. Acta 24, 463 (1977).
[CrossRef]

LaMacchia, J. T.

Micheron, F.

J.-P. Huignard, J.-P. Herriau, F. Micheron, Ferroelectrics 11, 393 (1976).
[CrossRef]

Phillips, W.

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, Appl. Phys. Lett. 26, 182 (1975).
[CrossRef]

Psaltis, D.

Restrick, R.

D. Gabor, G. W. Stroke, R. Restrick, A. Funkhouser, D. Brumm, Phys. Lett. 18, 116 (1965).
[CrossRef]

Staebler, D. L.

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, Appl. Phys. Lett. 26, 182 (1975).
[CrossRef]

Steier, W. H.

G. Kavounas, W. H. Steier, in Digest of Topical Meeting on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D. C., 1987), p. 155.

Stroke, G. W.

D. Gabor, G. W. Stroke, R. Restrick, A. Funkhouser, D. Brumm, Phys. Lett. 18, 116 (1965).
[CrossRef]

Van Heerden, P. J.

Wagner, K.

White, D. L.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, Appl. Phys. Lett. 26, 182 (1975).
[CrossRef]

Ferroelectrics (1)

J.-P. Huignard, J.-P. Herriau, F. Micheron, Ferroelectrics 11, 393 (1976).
[CrossRef]

Opt. Acta (2)

H. Kurz, Opt. Acta 24, 463 (1977).
[CrossRef]

J. W. Goodman, Opt. Acta 32, 1489 (1985).
[CrossRef]

Phys. Lett. (1)

D. Gabor, G. W. Stroke, R. Restrick, A. Funkhouser, D. Brumm, Phys. Lett. 18, 116 (1965).
[CrossRef]

Other (3)

D. E. Rumelhart, J. L. McClelland, eds., Parallel Distributed Processing (MIT, Cambridge, Mass., 1986), Vol. 1.

P. Gunter, J.-P. Huignard, eds., Photorefractive Materials and Applications (Springer-Verlag, Berlin, 1988), Vols. 1 and 2.
[CrossRef]

G. Kavounas, W. H. Steier, in Digest of Topical Meeting on Photorefractive Materials, Effects, and Devices (Optical Society of America, Washington, D. C., 1987), p. 155.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a holographic interconnect system. The photorefractive crystal is placed in the Fourier plane of lenses L. Beams from PC1 and PC2 write the interconnection gratings that link sources from PIN to detectors in POUT. The beam splitter BS separates the recording from the diffracted beams.

Fig. 2
Fig. 2

Oscilloscope traces of the diffracted intensity and the phase shift between the recorded gratings. The magnitude of the shift increases from (a) to (c).

Fig. 3
Fig. 3

Normalized diffraction efficiency as a function of the phase shift in units of degrees between the two gratings recorded with a double-exposure technique.

Fig. 4
Fig. 4

Oscilloscope traces of the diffracted intensity in a fan-out situation and of the phase shift of one of the writing beams.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( x ) = Δ n s cos ( K G x ) ,
Δ n ( x ) = Δ n s [ cos ( K G x ) + cos ( K G x + Φ ) ] ,
Δ n ( x ) = 2 Δ n s cos ( Φ / 2 ) cos ( K G x + Φ / 2 ) ,

Metrics